Skip to main content
Erschienen in: Journal of Electronic Testing 6/2022

07.12.2022

A CatBoost Based Approach to Detect Label Flipping Poisoning Attack in Hardware Trojan Detection Systems

verfasst von: Richa Sharma, G. K. Sharma, Manisha Pattanaik

Erschienen in: Journal of Electronic Testing | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hardware Trojan (HT) intrusion at different integrated circuit (IC) phases is the most important concern for the semiconductor industries. Recently, machine learning (ML) models have been used to detect HT from the pre-silicon IC phase, which utilizes either structural or SCOAP gate level netlist features. However, the main concern is that an adversary may poison the training dataset by flipping the target labels to malign the ML model training, which further provides an incorrect prediction on the test dataset. Thus, due to the malicious training of ML models, the Trojan-inserted ICs are missed out and can easily perform their malicious activities. Hence, it is of utmost importance to scan the training dataset and identify the poisoned input samples before applying ML models for HT detection. Therefore, this paper proposes a new technique that first identifies the poisoned training samples, which consist of SCOAP features, and then detects HTs from the unseen gate-level netlist. The proposed technique employs a robust ensemble Categorical Boosting (CatBoost) model, which avoids the problem of target leakage by using the concept of ordered boosting. Further, a label flipping poisoning attack based on a stochastic hill-climbing search is proposed, which flips the labels of the handful of samples that maximizes the validation dataset loss by deteriorating the model performance. Moreover, a defense method is proposed which utilizes CatBoost object importance and k-nearest neighbor to detect malicious training samples and restore their original labels. Finally, the CatBoost model is trained on the clean dataset to detect the HT nets from the unseen gate-level netlist accurately. Experimental results shows that the proposed attack method increases the on-an-average loss up to \(58\%\) and \(54\%\) on Trust-Hub and DeTrust benchmarks. Whereas the proposed defense method accurately identifies the poisoned input labels from the training dataset with on-an-average \(99\%\) accuracy on these benchmarks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
2.
Zurück zum Zitat Basu K, Saeed SM, Pilato C, Ashraf M, Nabeel MT, Chakrabarty K, Karri R (2019) Cad-base: An attack vector into the electronics supply chain. ACM Trans Des Autom Electron Syst (TODAES) 24(4):1–30CrossRef Basu K, Saeed SM, Pilato C, Ashraf M, Nabeel MT, Chakrabarty K, Karri R (2019) Cad-base: An attack vector into the electronics supply chain. ACM Trans Des Autom Electron Syst (TODAES) 24(4):1–30CrossRef
3.
Zurück zum Zitat Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware trojan attacks: threat analysis and countermeasures. Proc IEEE 102(8):1229–1247CrossRef Bhunia S, Hsiao MS, Banga M, Narasimhan S (2014) Hardware trojan attacks: threat analysis and countermeasures. Proc IEEE 102(8):1229–1247CrossRef
4.
Zurück zum Zitat Chakraborty RS, Narasimhan S, Bhunia S (2009) Hardware trojan: Threats and emerging solutions. In: Proc. IEEE International high level design validation and test workshop. pp 166–171 Chakraborty RS, Narasimhan S, Bhunia S (2009) Hardware trojan: Threats and emerging solutions. In: Proc. IEEE International high level design validation and test workshop. pp 166–171
5.
Zurück zum Zitat Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp 785–794 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp 785–794
6.
Zurück zum Zitat Cheng N, Zhang H, Li Z (2021) Data sanitization against label flipping attacks using adaboost-based semi-supervised learning technology. Soft Comput 25(23)14573–14581 Cheng N, Zhang H, Li Z (2021) Data sanitization against label flipping attacks using adaboost-based semi-supervised learning technology. Soft Comput 25(23)14573–14581
8.
Zurück zum Zitat Elnaggar R, Chakrabarty K (2018) Machine learning for hardware security: Opportunities and risks. J Electron Test 34(2):183–201CrossRef Elnaggar R, Chakrabarty K (2018) Machine learning for hardware security: Opportunities and risks. J Electron Test 34(2):183–201CrossRef
9.
Zurück zum Zitat Fern N, Kulkarni S, Cheng K-TT (2015) Hardware trojans hidden in RTL don’t cares-automated insertion and prevention methodologies. In: Proc. IEEE International Test Conference (ITC). pp 1–8 Fern N, Kulkarni S, Cheng K-TT (2015) Hardware trojans hidden in RTL don’t cares-automated insertion and prevention methodologies. In: Proc. IEEE International Test Conference (ITC). pp 1–8
10.
Zurück zum Zitat Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat pp. 1189–1232 Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat pp. 1189–1232
11.
Zurück zum Zitat Gao Y, Doan BG, Zhang Z, Ma S, Zhang J, Fu A, Nepal S, Kim H (2020) Backdoor attacks and countermeasures on deep learning: A comprehensive review. arXiv preprint arXiv:2007.10760 Gao Y, Doan BG, Zhang Z, Ma S, Zhang J, Fu A, Nepal S, Kim H (2020) Backdoor attacks and countermeasures on deep learning: A comprehensive review. arXiv preprint arXiv:​2007.​10760
12.
Zurück zum Zitat Goldstein LH, Thigpen EL (1980) Scoap: Sandia controllability/observability analysis program. In Proceedings of the 17th Design Automation Conference pp. 190–196 Goldstein LH, Thigpen EL (1980) Scoap: Sandia controllability/observability analysis program. In Proceedings of the 17th Design Automation Conference pp. 190–196
13.
14.
Zurück zum Zitat Gu T, Liu K, Dolan-Gavitt B, Garg S (2019) Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access 7:47230–47244 Gu T, Liu K, Dolan-Gavitt B, Garg S (2019) Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access 7:47230–47244
15.
Zurück zum Zitat Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hardware trojans classification for gate-level netlists based on machine learning. In: Proc. 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE, pp 203–206 Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hardware trojans classification for gate-level netlists based on machine learning. In: Proc. 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE, pp 203–206
16.
Zurück zum Zitat Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature extraction at gate-level netlists and its application to hardware-trojan detection using random forest classifier. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). pp 1–4 Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature extraction at gate-level netlists and its application to hardware-trojan detection using random forest classifier. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). pp 1–4
17.
Zurück zum Zitat Hasegawaa K, Yanagisawa M, Togawa N (2017) Hardware trojans classification for gate-level netlists using multi-layer neural networks. In: Proc. IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS). pp 227–232 Hasegawaa K, Yanagisawa M, Togawa N (2017) Hardware trojans classification for gate-level netlists using multi-layer neural networks. In: Proc. IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS). pp 227–232
18.
Zurück zum Zitat Hu W, Zhang L, Ardeshiricham A, Blackstone J, Hou B, Tai Y, Kastner R (2017) Why you should care about don’t cares: Exploiting internal don’t care conditions for hardware trojans. In: Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD). pp 707–713 Hu W, Zhang L, Ardeshiricham A, Blackstone J, Hou B, Tai Y, Kastner R (2017) Why you should care about don’t cares: Exploiting internal don’t care conditions for hardware trojans. In: Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD). pp 707–713
19.
Zurück zum Zitat Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine learning against hardware trojan attacks: Recent advances and challenges. IEEE Access 8:10796–10826 Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine learning against hardware trojan attacks: Recent advances and challenges. IEEE Access 8:10796–10826
20.
Zurück zum Zitat Jacob N, Merli D, Heyszl J, Sigl G (2014) Hardware trojans: current challenges and approaches. IET Comput Digit Tech 8(6):264–273CrossRef Jacob N, Merli D, Heyszl J, Sigl G (2014) Hardware trojans: current challenges and approaches. IET Comput Digit Tech 8(6):264–273CrossRef
21.
Zurück zum Zitat Kaviani S, Sohn I (2021) Defense against neural trojan attacks: A survey. Neurocomputing 423:651–667CrossRef Kaviani S, Sohn I (2021) Defense against neural trojan attacks: A survey. Neurocomputing 423:651–667CrossRef
22.
Zurück zum Zitat Khamitkar R, Dube R (2022) A survey on using machine learning to counter hardware trojan challenges. In: ICT with Intelligent Applications. Springer, pp 539–547 Khamitkar R, Dube R (2022) A survey on using machine learning to counter hardware trojan challenges. In: ICT with Intelligent Applications. Springer, pp 539–547
23.
Zurück zum Zitat Kok CH, Ooi CY, Inoue M, Moghbel M, Dass SB, Choo HS, Ismail N, Hussin FA (2019) Net classification based on testability and netlist structural features for hardware trojan detection. In: Proc. IEEE 28th Asian Test Symposium (ATS). pp 105–1055 Kok CH, Ooi CY, Inoue M, Moghbel M, Dass SB, Choo HS, Ismail N, Hussin FA (2019) Net classification based on testability and netlist structural features for hardware trojan detection. In: Proc. IEEE 28th Asian Test Symposium (ATS). pp 105–1055
24.
Zurück zum Zitat Kok CH, Ooi CY, Moghbel M, Ismail N, Choo HS, Inoue M (2019) Classification of trojan nets based on scoap values using supervised learning. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). pp 1–5 Kok CH, Ooi CY, Moghbel M, Ismail N, Choo HS, Inoue M (2019) Classification of trojan nets based on scoap values using supervised learning. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). pp 1–5
25.
Zurück zum Zitat Kurihara T, Togawa N (2021) Hardware-trojan classification based on the structure of trigger circuits utilizing random forests. In: Proc. IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). pp 1–4 Kurihara T, Togawa N (2021) Hardware-trojan classification based on the structure of trigger circuits utilizing random forests. In: Proc. IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). pp 1–4
26.
Zurück zum Zitat Li H, Liu Q, Zhang J (2016) A survey of hardware trojan threat and defense. Integration 55:426–437CrossRef Li H, Liu Q, Zhang J (2016) A survey of hardware trojan threat and defense. Integration 55:426–437CrossRef
27.
Zurück zum Zitat Liakos KG, Georgakilas GK, Moustakidis S, Sklavos N, Plessas FC (2020) Conventional and machine learning approaches as countermeasures against hardware trojan attacks. Microprocess Microsyst p. 103295 Liakos KG, Georgakilas GK, Moustakidis S, Sklavos N, Plessas FC (2020) Conventional and machine learning approaches as countermeasures against hardware trojan attacks. Microprocess Microsyst p. 103295
28.
Zurück zum Zitat Liu W, Chang C-H, Wang X, Liu C, Fung JM, Ebrahimabadi M, Karimi N, Meng X, Basu K (2021) Two sides of the same coin: Boons and banes of machine learning in hardware security. IEEE J Emerging Sel Top Circuits Syst 11(2):228–251CrossRef Liu W, Chang C-H, Wang X, Liu C, Fung JM, Ebrahimabadi M, Karimi N, Meng X, Basu K (2021) Two sides of the same coin: Boons and banes of machine learning in hardware security. IEEE J Emerging Sel Top Circuits Syst 11(2):228–251CrossRef
29.
Zurück zum Zitat Liu Y, Mondal A, Chakraborty A, Zuzak M, Jacobsen N, Xing D, Srivastava A (2020) A survey on neural trojans. In: Proc. 21st International Symposium on Quality Electronic Design (ISQED). pp 33–39 Liu Y, Mondal A, Chakraborty A, Zuzak M, Jacobsen N, Xing D, Srivastava A (2020) A survey on neural trojans. In: Proc. 21st International Symposium on Quality Electronic Design (ISQED). pp 33–39
30.
Zurück zum Zitat Liu Y, Xie Y, Srivastava A (2017) Neural trojans. In: Proc. IEEE International Conference on Computer Design (ICCD). pp 45–48 Liu Y, Xie Y, Srivastava A (2017) Neural trojans. In: Proc. IEEE International Conference on Computer Design (ICCD). pp 45–48
31.
Zurück zum Zitat Mondal A, Biswal RK, Mahalat MH, Roy S, Sen B (2021) Hardware trojan free netlist identification: A clustering approach. J Electron Test 37(3):317–328CrossRef Mondal A, Biswal RK, Mahalat MH, Roy S, Sen B (2021) Hardware trojan free netlist identification: A clustering approach. J Electron Test 37(3):317–328CrossRef
32.
Zurück zum Zitat Nahiyan A, Sadi M, Vittal R, Contreras G, Forte D, Tehranipoor M (2017) Hardware trojan detection through information flow security verification. In: Proc. IEEE International Test Conference (ITC). pp 1–10 Nahiyan A, Sadi M, Vittal R, Contreras G, Forte D, Tehranipoor M (2017) Hardware trojan detection through information flow security verification. In: Proc. IEEE International Test Conference (ITC). pp 1–10
33.
Zurück zum Zitat Nozawa K, Hasegawa K, Hidano S, Kiyomoto S, Hashimoto K, Togawa N (2019) Adversarial examples for hardware-trojan detection at gate-level netlists. In: Comput Secur. Springer, pp 341–359 Nozawa K, Hasegawa K, Hidano S, Kiyomoto S, Hashimoto K, Togawa N (2019) Adversarial examples for hardware-trojan detection at gate-level netlists. In: Comput Secur. Springer, pp 341–359
34.
Zurück zum Zitat Paudice A, Muñoz-González L, Lupu EC (2018) Label sanitization against label flipping poisoning attacks. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 5–15 Paudice A, Muñoz-González L, Lupu EC (2018) Label sanitization against label flipping poisoning attacks. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 5–15
35.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12:2825–2830
36.
37.
Zurück zum Zitat Pilato C, Basu K, Regazzoni F, Karri R (2018) Black-hat high-level synthesis: Myth or reality? IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27(4):913–926 Pilato C, Basu K, Regazzoni F, Karri R (2018) Black-hat high-level synthesis: Myth or reality? IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27(4):913–926
38.
Zurück zum Zitat Pitropakis N, Panaousis E, Giannetsos T, Anastasiadis E, Loukas G (2019) A taxonomy and survey of attacks against machine learning. Comput Sci Rev 34:100199 Pitropakis N, Panaousis E, Giannetsos T, Anastasiadis E, Loukas G (2019) A taxonomy and survey of attacks against machine learning. Comput Sci Rev 34:100199
39.
Zurück zum Zitat Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2017) Catboost: unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516 Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2017) Catboost: unbiased boosting with categorical features. arXiv preprint arXiv:​1706.​09516
40.
Zurück zum Zitat Rawal A, Rawat D, Sadler BM (2021) Recent advances in adversarial machine learning: status, challenges and perspectives. Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III 11746:701–712 Rawal A, Rawat D, Sadler BM (2021) Recent advances in adversarial machine learning: status, challenges and perspectives. Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III 11746:701–712
41.
Zurück zum Zitat Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: Models, methods, and metrics. Proc IEEE 102(8):1283–1295CrossRef Rostami M, Koushanfar F, Karri R (2014) A primer on hardware security: Models, methods, and metrics. Proc IEEE 102(8):1283–1295CrossRef
42.
Zurück zum Zitat Russell SJ (2010) Artificial intelligence a modern approach. Pearson Education, Inc Russell SJ (2010) Artificial intelligence a modern approach. Pearson Education, Inc
43.
Zurück zum Zitat Salmani H (2017) Cotd: reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350CrossRef Salmani H (2017) Cotd: reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist. IEEE Trans Inf Forensics Secur 12(2):338–350CrossRef
44.
Zurück zum Zitat Salmani H, Tehranipoor M, Karri R (2013) On design vulnerability analysis and trust benchmarks development. In: Proc. IEEE 31st international conference on computer design (ICCD). pp 471–474 Salmani H, Tehranipoor M, Karri R (2013) On design vulnerability analysis and trust benchmarks development. In: Proc. IEEE 31st international conference on computer design (ICCD). pp 471–474
46.
Zurück zum Zitat Sharma R, Valivati NK, Sharma G, Pattanaik M (2020) A new hardware trojan detection technique using class weighted xgboost classifier. In: Proc. 24th International Symposium on VLSI Design and Test (VDAT). pp 1–6 Sharma R, Valivati NK, Sharma G, Pattanaik M (2020) A new hardware trojan detection technique using class weighted xgboost classifier. In: Proc. 24th International Symposium on VLSI Design and Test (VDAT). pp 1–6
47.
Zurück zum Zitat Taheri R, Javidan R, Shojafar M, Pooranian Z, Miri A, Conti M (2020) On defending against label flipping attacks on malware detection systems. Neural Comput Appl 32(18):14781–14800 Taheri R, Javidan R, Shojafar M, Pooranian Z, Miri A, Conti M (2020) On defending against label flipping attacks on malware detection systems. Neural Comput Appl 32(18):14781–14800
48.
Zurück zum Zitat Wang J, Hassan GM, Akhtar N (2022) A survey of neural trojan attacks and defenses in deep learning. arXiv preprint arXiv:2202.07183 Wang J, Hassan GM, Akhtar N (2022) A survey of neural trojan attacks and defenses in deep learning. arXiv preprint arXiv:​2202.​07183
49.
Zurück zum Zitat Wang Y, Han T, Han X, Liu P (2019) Ensemble-learning-based hardware trojans detection method by detecting the trigger nets. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). pp 1–5 Wang Y, Han T, Han X, Liu P (2019) Ensemble-learning-based hardware trojans detection method by detecting the trigger nets. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). pp 1–5
50.
Zurück zum Zitat Xiao H, Biggio B, Nelson B, Xiao H, Eckert C, Roli F (2015) Support vector machines under adversarial label contamination. Neurocomputing 160:53–62CrossRef Xiao H, Biggio B, Nelson B, Xiao H, Eckert C, Roli F (2015) Support vector machines under adversarial label contamination. Neurocomputing 160:53–62CrossRef
51.
Zurück zum Zitat Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines. In: ECAI 2012. IOS Press, pp 870–875 Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines. In: ECAI 2012. IOS Press, pp 870–875
52.
Zurück zum Zitat Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016) Hardware trojans: Lessons learned after one decade of research. ACM Trans Des Autom Electron Syst (TODAES) 22(1):6 Xiao K, Forte D, Jin Y, Karri R, Bhunia S, Tehranipoor M (2016) Hardware trojans: Lessons learned after one decade of research. ACM Trans Des Autom Electron Syst (TODAES) 22(1):6
53.
Zurück zum Zitat Xie X, Sun Y, Chen H, Ding Y (2017) Hardware trojans classification based on controllability and observability in gate-level netlist. IEICE Electronics Express 14(18):20170682–20170682 Xie X, Sun Y, Chen H, Ding Y (2017) Hardware trojans classification based on controllability and observability in gate-level netlist. IEICE Electronics Express 14(18):20170682–20170682
54.
Zurück zum Zitat Xue M, Gu C, Liu W, Yu S, O’Neill M (2020) Ten years of hardware trojans: a survey from the attacker’s perspective. IET Comput Digit Tech 14(6):231–246CrossRef Xue M, Gu C, Liu W, Yu S, O’Neill M (2020) Ten years of hardware trojans: a survey from the attacker’s perspective. IET Comput Digit Tech 14(6):231–246CrossRef
55.
Zurück zum Zitat Xue M, Yuan C, Wu H, Zhang Y, Liu W (2020) Machine learning security: Threats, countermeasures, and evaluations. IEEE Access 8:74720–74742 Xue M, Yuan C, Wu H, Zhang Y, Liu W (2020) Machine learning security: Threats, countermeasures, and evaluations. IEEE Access 8:74720–74742
56.
Zurück zum Zitat Yang Y, Ye J, Cao Y, Zhang J, Li X, Li H, Hu Y (2020) Survey: Hardware trojan detection for netlist. In: Proc. IEEE 29th Asian Test Symposium (ATS). pp 1–6 Yang Y, Ye J, Cao Y, Zhang J, Li X, Li H, Hu Y (2020) Survey: Hardware trojan detection for netlist. In: Proc. IEEE 29th Asian Test Symposium (ATS). pp 1–6
57.
Zurück zum Zitat Zhang H, Cheng N, Zhang Y, Li Z (2021) Label flipping attacks against naive bayes on spam filtering systems. Appl Intell 51(7):4503–4514CrossRef Zhang H, Cheng N, Zhang Y, Li Z (2021) Label flipping attacks against naive bayes on spam filtering systems. Appl Intell 51(7):4503–4514CrossRef
58.
Zurück zum Zitat Zhang J, Yuan F, Xu Q (2014) Detrust: Defeating hardware trust verification with stealthy implicitly-triggered hardware trojans. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM pp. 153–166 Zhang J, Yuan F, Xu Q (2014) Detrust: Defeating hardware trust verification with stealthy implicitly-triggered hardware trojans. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM pp. 153–166
Metadaten
Titel
A CatBoost Based Approach to Detect Label Flipping Poisoning Attack in Hardware Trojan Detection Systems
verfasst von
Richa Sharma
G. K. Sharma
Manisha Pattanaik
Publikationsdatum
07.12.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Testing / Ausgabe 6/2022
Print ISSN: 0923-8174
Elektronische ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-022-06035-6

Weitere Artikel der Ausgabe 6/2022

Journal of Electronic Testing 6/2022 Zur Ausgabe

EditorialNotes

Editorial

Neuer Inhalt