Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

A certain \((p,q)\)-derivative operator and associated divided differences

verfasst von: Serkan Araci, Uğur Duran, Mehmet Acikgoz, Hari M Srivastava

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Recently, Sofonea (Gen. Math. 16:47-54, 2008) considered some relations in the context of quantum calculus associated with the q-derivative operator \(D_{q}\) and divided difference. As applications of the post-quantum calculus known as the \((p,q)\)-calculus, we derive several relations involving the \((p,q)\)-derivative operator and divided differences.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

1 Introduction

The quantum calculus has many applications in the fields of special functions and many other areas (see [17]). Further there is possibility of extension of the q-calculus to post-quantum calculus denoted by the \((p,q)\)-calculus. Actually such an extension of quantum calculus cannot be obtained directly by substitution of q by \(q/p\) in q-calculus. When the case \(p=1\) in \((p,q)\)-calculus, the q-calculus may be obtained (see [6, 7]). Recently, Chakrabarti and Jagannathan [8] introduced a consideration of the \(( p,q ) \)-integer in order to generalize or unify several forms of q-oscillator algebras well known in the physics literature related to the representation theory of single-paramater quantum algebras (see also [35] and [9]). They also considered the necessary elements of the \(( p,q ) \)-calculus involving \(( p,q ) \)-exponential, \(( p,q ) \)-integration and the \(( p,q ) \)-differentiation. Corcino [10] developed the theory of a \(( p,q ) \)-extension of the binomial coefficients and also established some properties parallel to those of the ordinary and q-binomial coefficients, which is comprised horizontal generating function, the triangular, vertical, and the horizontal recurrence relations and the inverse and the orthogonality relations. Sadjang [11] investigated some properties of the \(( p,q ) \)-derivatives and the \(( p,q ) \)-integrations. Sadjang [11] also provided two suitable polynomial bases for the \(( p,q ) \)-derivative and gave various properties of these bases.
The \(( p,q )\)-number is given by
$$ [ n ] _{p,q}=\frac{p^{n}-q^{n}}{p-q} \quad( p\neq q ), $$
which is a natural generalization of the q-number: that is, we have (cf. [10] and [11])
$$ \lim_{p\rightarrow1} [ n ] _{p,q}:= [ n ] _{q}. $$
It is clear that the notation \([ n ] _{p,q}\) is symmetric, that is,
$$ [ n ] _{p,q}= [ n ] _{q,p}. $$
The \((p,q)\)-Gauss binomial coefficients given by
$$ \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}=\frac{ [ n ] _{p,q}!}{ [ n-k ] _{p,q}! [ k ] _{p,q}!} \quad( n\geqq k ) $$
and the \((p,q)\)-factorial given by
$$ [ n ] _{p,q}!= [ n ] _{p,q} [ n-1 ] _{p,q}\cdots [ 2 ] _{p,q} [ 1 ] _{p,q}\quad ( n\in \mathbb{N} ) $$
are also known from [10] and [11]. Further, the \((p,q)\)-analogs of Pascal’s identity are given by
$$\begin{aligned} \begin{bmatrix} n+1\\ k \end{bmatrix} _{p,q} &=p^{k} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}+q^{n-k} \begin{bmatrix} n\\ k-1 \end{bmatrix} _{p,q} \\ &=q^{k} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}+p^{n-k} \begin{bmatrix} n\\ k-1 \end{bmatrix} _{p,q}, \end{aligned}$$
where \(k\in \{ 0,1,2,\ldots,n \}\) (cf. [10] and [11]).
Let p and q be elements of complex numbers and \(D=D_{p,q}\subset \mathbb{C}\) such that \(x\in D\) implies \(px\in D\) and \(qx\in D\). Here, in this investigation, we give the following two definitions which involve a post-quantum generalization of Sofonea’s work [1].
Definition 1
Let \(0<\vert q\vert <\vert p\vert \leqq1\). A given function \(f:D_{p,q}\rightarrow\mathbb{C}\) is called \((p,q)\)-differentiable under the restriction that, if \(0\in D_{p,q}\), then \(f^{\prime} ( 0 )\) exists.
Definition 2
Let \(0<\vert q\vert <\vert p\vert \leqq1\). A given function \(f:D_{p,q}\rightarrow\mathbb{C}\) is called \((p,q)\)-differentiable of order n, if and only if \(0\in D_{p,q}\) implies that \(f^{ ( n ) } ( 0 ) \) exists.
The \((p,q)\)-derivative operator of a function f is defined by
$$ D_{p,q}f ( x ) =\frac{f ( px ) -f ( qx ) }{ ( p-q ) x} \quad( x\neq0 ) $$
(1.1)
and
$$ ( D_{p,q}f ) ( 0 ) =f^{\prime} ( 0 ), $$
provided that the function f is differentiable at 0. We note that
$$ D_{p,q}=D_{q,p}. $$
Furthermore,
$$ ( D_{p,q}fg ) ( x ) =g ( px ) ( D_{p,q}f ) ( x ) +f ( qx ) ( D_{p,q}g ) ( x ) $$
(1.2)
and
$$ \biggl( D_{p,q}\frac{f}{g} \biggr) ( x ) =\frac{g ( px ) ( D_{p,q}f ) ( x ) -f ( px ) ( D_{p,q}g ) ( x ) }{g ( px ) g ( qx ) }\quad \bigl( g ( px ) g ( qx ) \neq0 \bigr) $$
(1.3)
hold true for the linear operator \(D_{p,q}\) (cf. [11]).
The divided differences at a system of distinct points \(x_{0},x_{1},\ldots ,x_{n}\) are denoted by \([ x_{0},x_{1},\ldots,x_{n};f ]\). In fact, we have (see [1] and [2])
$$ [ x_{0},x_{1},\ldots,x_{n};f ] =\sum _{k=0}^{n}\frac{f ( x_{k} ) }{\mathop{\prod^{n}_{(i\neq k)}}\limits_{\phantom{aa}i=0} ( x_{k}-x_{i} ) }. $$
(1.4)
In the next part of the paper, we obtain some potentially useful results and relations between the \((p,q)\)-derivative operator and divided differences. The results presented here provide a good generalization of the above-mentioned Sofonea results.

2 Main results

Let us consider the points
$$ x_{k}=p^{k}q^{n-k}x\quad ( k=0,1,\ldots,n ) $$
as follows:
$$ x_{0}=q^{n}x, \qquad x_{1}=q^{n-1}px,\qquad\ldots,\qquad x_{n-1}=qp^{n-1}x,\qquad x_{n}=p^{n}x. $$
We now state the following theorem.
Theorem 1
Let p and q be complex numbers with
$$ 0< \vert q\vert < \vert p\vert \leqq1\quad \textit{and}\quad f:D_{p,q}\rightarrow\mathbb{C}. $$
Then, by taking the knots \(x_{k}=p^{k}q^{n-k}x\),
$$\begin{aligned} & \bigl[ q^{n}x,q^{n-1}px,\ldots,qp^{n-1}x,p^{n}x;f \bigr] \\ &\quad =\frac{1}{q^{\binom{n}{2}} [ n ] _{{p,q}}!x^{n} ( p-q ) ^{n}}\sum_{k=0}^{n} ( -1 ) ^{n-k} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}p^{\frac{-k ( 2n-k-1 ) }{2}}q^{\binom{k}{2}}f \bigl( xp^{k}q^{n-k} \bigr) . \end{aligned}$$
(2.1)
Proof
For \(0\leqq l< k\), we have
$$ x_{k}-x_{l}=xp^{l}q^{n-k} ( p-q ) [ k-l ] _{p,q} $$
and, for \(k< l\leqq n\), we find that
$$ x_{k}-x_{l}=xp^{k}q^{n-l} ( q-p ) [ l-k ] _{p,q}. $$
Since
$$\begin{aligned} \mathop{\prod_{l=0}}\limits_{l\neq k}^{n} ( x_{k}-x_{l} ) & =\prod_{l=0}^{k-1} ( x_{k}-x_{l} ) \prod_{l=k+1}^{n} ( x_{k}-x_{l} ) \\ & =x^{n}p^{ ( n-k ) k} ( -1 ) ^{n-k} ( p-q ) ^{n}q^{k ( n-k ) +\binom{n-k}{2}} [ k ] _{{p,q}}!p^{k ( n-k ) +\binom {k}{2}} [ n-k ] _{{p,q}}! \\ & = ( -1 ) ^{n-k} ( p-q ) ^{n}x^{n}p^{k ( 2n-k-1 ) /2}q^{\binom{n}{2}-\binom{k}{2}} [ k ] _{{p,q}}![ n-k ] _{{p,q}}!, \end{aligned}$$
we have the following consequence from (1.4):
$$ [ x_{0},x_{1},\ldots,x_{n};f ] = \frac{q^{-\binom{n}{2}}}{ [ n] _{{p,q}}!x^{n} ( p-q ) ^{n}}\sum_{k=0}^{n} ( -1 ) ^{n-k} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q} p^{-k ( 2n-k-1 ) /2}q^{\binom{k}{2}}f \bigl( xp^{k}q^{n-k} \bigr) . $$
Therefore, the proof of Theorem 1 is completed. □
By using the following expressions:
$$ D_{p,q}^{0}=I, \qquad D_{p,q}^{1}=D_{p,q}\quad \mbox{and}\quad D_{p,q}^{k}=D_{p,q}D_{p,q}^{k-1}, $$
we now give a representation of the operator \(D_{p,q}^{n}\) as in Theorem 2 below.
Theorem 2
Let the function \(f:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q) \)-differentiable of order n. Then
$$ \bigl( D_{p,q}^{n}f \bigr) ( x ) =\frac{q^{-\binom{n}{2}}}{ x^{n} ( p-q ) ^{n}}\sum _{k=0}^{n} ( -1 ) ^{n-k} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q} \frac{q^{\binom{k}{2}}f ( xp^{k}q^{n-k} ) }{p^{k ( 2n-k-1 ) /2}}. $$
(2.2)
Proof
Theorem 2 is proved by making use of the following results:
$$ ( D_{p,q}f ) ( x ) =\frac{f ( qx ) -f ( px ) }{ ( q-p ) x}=\frac{f ( qx ) }{qx-px}+ \frac{f ( px ) }{px-qx}= [ 1 ] _{p,q}! [ qx,px;f ] $$
and
$$\begin{aligned} & \bigl( D_{p,q}^{2}f \bigr) ( x ) \\ &\quad =\frac{ ( D_{p,q}f ) ( qx ) - ( D_{p,q}f ) ( px ) }{ ( q-p ) x} \\ &\quad =\frac{\frac{f ( q^{2}x ) -f ( pqx ) }{ ( q-p ) qx}-\frac{f ( pqx ) -f ( p^{2}x ) }{ ( q-p ) px}}{ ( p-q ) x} \\ &\quad = ( p+q ) \biggl[ \frac{f ( q^{2}x ) }{ ( q^{2}-p^{2} ) ( q-p ) x^{2}q}-\frac{f ( pqx ) }{( q-p ) ^{2}x^{2}pq}+\frac{f ( p^{2}x ) }{ ( q^{2}-p^{2} ) ( q-p ) x^{2}p} \biggr] \\ & \quad= [ 2 ] _{p,q}! \bigl[ q^{2}x,pqx,p^{2}x;f \bigr] . \end{aligned}$$
Continuing this process, we deduce
$$ \bigl( D_{p,q}^{n}f \bigr) ( x ) = [ n ] _{p,q}! \bigl[ q^{n}x,q^{n-1}px,\ldots,qp^{n-1}x,p^{n}x;f \bigr] $$
(2.3)
by using the following formula:
$$ [ x_{0},x_{1},\ldots,x_{n};\cdot] = \frac{ [ x_{1},x_{2},\ldots,x_{n};\cdot ] - [ x_{0},x_{1},\ldots ,x_{n-1};\cdot ] }{x_{n}-x_{0}}. $$
It follows from Theorem 1 that
$$ \bigl( D_{p,q}^{n}f \bigr) ( x ) =q^{-\binom{n}{2}}x^{-n} ( p-q ) ^{-n}\sum_{k=0}^{n} ( -1 ) ^{n-k} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q} p^{-k ( 2n-k-1 ) /2}q^{\binom{k}{2}}f \bigl( xp^{k}q^{n-k} \bigr) , $$
which completes the proof of Theorem 2. □
In the case when
$$ f ( x ) =x^{n} $$
in Theorem 2, we get the following corollary.
Corollary 1
The following result holds true:
$$ ( p-q ) ^{n}=\sum_{k=0}^{n} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}p^{\binom{k+1}{2}}q^{\binom{n-k+1}{2}}\frac{ ( -1 ) ^{n-k}}{ [ n ] _{p,q}!}. $$
We now consider the \(( p,q ) \)-analog of the Leibniz rule to represent it by means of the divided differences. First of all, we need to get the \(( p,q ) \)-analog of the Leibniz rule by the following lemma.
Lemma
Let the functions \(f:D_{p,q}\rightarrow \mathbb{C}\) and \(g:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q)\)-differentiable of order n. Then
$$ D_{p,q}^{n} ( fg ) ( x ) =\sum_{k=0}^{n} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q} D_{p,q}^{k} ( f ) \bigl( xp^{n-k} \bigr) D_{p,q}^{n-k} ( g ) \bigl( xq^{k} \bigr). $$
Proof
The lemma can easily be proved by applying the principle of mathematical induction. We, therefore, omit the proof of the lemma. □
We now state the \(( p,q )\)-Leibniz rule by using divided differences as follows.
Theorem 3
Let the functions \(f:D_{p,q}\rightarrow\mathbb{C}\) and \(g:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q)\)-differentiable of order n. Then \((fg ) (x)\) is also \((p,q)\)-differentiable of order n and
$$\begin{aligned} D_{p,q}^{n} ( fg ) ( x ) ={}& [ n ] _{p,q}!\sum _{k=0}^{n} \bigl[ q^{n}x,q^{n-1}px, \ldots,q^{n-k+1}p^{k-1}x,q^{n-k}p^{k}x;f \bigr]\\ &{} \cdot\bigl[ q^{n-k}p^{k}x,q^{n-k-1}p^{k+1}x, \ldots,qp^{n-1}x,p^{n}x;g \bigr] . \end{aligned}$$
Proof
Our assertion in Theorem 3 follows from equation (2.3) and the above lemma. The details involved are being omitted here. □
Now also we give a function at a point \(p^{n}x\) by binomial expression and \((p,q)\)-derivative of order k.
Theorem 4
Let the function \(f:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q) \)-differentiable of order n. Then
$$ f \bigl( p^{n}x \bigr) =\sum_{k=0}^{n} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}x^{k}p^{\binom{k}{2}} ( p-q ) ^{k}D_{p,q}^{k} \bigl( f ( x ) \bigr) . $$
Proof
We consider Newton’s formula as follows:
$$\begin{aligned} f ( z ) ={}&\sum_{k=0}^{n-1} ( z-x_{0} ) ( z-x_{1} ) \cdots( z-x_{k-1} ) [ x_{0},x_{1},\ldots,x_{k};f ] \\ &{} + ( z-x_{0} ) ( z-x_{1} ) \cdots( z-x_{n-1} ) [ x_{0},x_{1},\ldots,x_{n-1},z;f ] . \end{aligned}$$
(2.4)
Upon setting
$$ x_{k}=p^{k}q^{n-k}x\quad (k=0,1,\ldots,n-1) $$
in equation (2.4) and \(z=p^{n}x\), if we use equation (2.1), we find that
$$\begin{aligned} f \bigl( p^{n}x \bigr) ={}&\sum_{k=0}^{n-1} \bigl( p^{n}x-q^{n}x \bigr) \bigl( p^{n}x-q^{n-1}px \bigr) \cdots\bigl( p^{n}x-q^{n-k+1}p^{k-1}x \bigr)\\ &{}\cdot \bigl[ q^{n}x,q^{n-1}px,\ldots,q^{n-k}p^{k}x;f \bigr] \\ &{} + \bigl( p^{n}x-q^{n}x \bigr) \bigl( p^{n}x-q^{n-1}px \bigr) \cdots\bigl( p^{n}x-qp^{n-1}x \bigr) \\ &{}\cdot\bigl[ q^{n}x,q^{n-1}px,\ldots,qp^{n-1}x,p^{n}x;f \bigr] \\ ={}&\sum_{k=0}^{n-1} \bigl( p^{n}x-q^{n}x \bigr) \bigl( p^{n}x-q^{n-1}px \bigr) \cdots\bigl( p^{n}x-q^{n-k+1}p^{k-1}x \bigr) \frac{( D_{p,q}^{k}f ) ( x ) }{ [ k ] _{p,q}!} \\ &{} + \bigl( p^{n}x-q^{n}x \bigr) \bigl( p^{n}x-q^{n-1}px \bigr) \cdots\bigl( p^{n}x-qp^{n-1}x \bigr) \frac{ ( D_{p,q}^{n}f ) ( x ) }{ [ n ] _{p,q}!} \\ ={}&\sum_{k=0}^{n} \bigl( p^{n}x-q^{n}x \bigr) \bigl( p^{n}x-q^{n-1}px \bigr) \cdots\bigl( p^{n}x-q^{n-k+1}p^{k-1}x \bigr) \frac{ ( D_{p,q}^{k}f ) ( x ) }{ [ k ] _{p,q}!} \\ ={}&\sum_{k=0}^{n}x^{k}p^{\binom{k}{2}} \frac{\frac{ ( p^{n}-q^{n} ) ( p^{n-1}-q^{n-1} ) \cdots ( p-q ) }{( p-q ) ^{n}}}{\frac{ ( p^{n-k}-q^{n-k} ) ( p^{n-k-1}-q^{n-k-1} ) \cdots ( p-q ) }{ ( p-q ) ^{n-k} ( p-q ) ^{k}}}\frac{ ( D_{p,q}^{k}f ) ( x ) }{ [ k ] _{p,q}!} \\ ={}&\sum_{k=0}^{n}x^{k}p^{\binom{k}{2}} ( p-q ) ^{k}\frac{ [ n] _{p,q}!}{ [ n-k ] _{p,q}! [ k ] _{p,q}!} \bigl( D_{p,q}^{k}f \bigr) ( x ) , \end{aligned}$$
as asserted by Theorem 4. □
Finally, we are in a position to give the following result.
Corollary 2
Let p and q be complex numbers such that
$$ 0< \vert q\vert < \vert p\vert \leqq1. $$
Also let the function \(f:D_{p,q}\rightarrow\mathbb{C}\) be \((p,q)\)-differentiable of order n. Then
$$ f ( x ) =\sum_{k=0}^{n} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}q^{k ( k-n ) }p^{\binom{k+1}{2}} ( qx-px ) ^{k} \bigl( D_{p,q}^{k}f \bigr) \biggl( \frac{xp^{n-k}}{q^{k}} \biggr) . $$
Proof
Since, for \(k\in \{ 0,1,\ldots,n \} \),
$$ \begin{bmatrix} n\\ k \end{bmatrix} _{\frac{1}{p},\frac{1}{q}}=\frac{ [ n ] _{\frac{1}{p},\frac{1}{q}}!}{ [ n-k ] _{\frac{1}{p},\frac{1}{q}}![ k ] _{\frac{1}{p},\frac{1}{q}}!}=\frac{ ( pq ) ^{-\binom{n}{2}}}{ ( pq ) ^{-\binom{n-k}{2}} ( pq ) ^{-\binom{k}{2}}} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}, $$
we have
$$ ( D_{\frac{1}{p},\frac{1}{q}}f ) ( x ) =\frac{f ( \frac{x}{q} ) -f ( \frac{x}{p} ) }{ ( p-q ) x} ( pq ) =pq ( D_{p,q}f ) \biggl( \frac{x}{pq} \biggr) $$
and
$$\begin{aligned} \bigl( D_{\frac{1}{p},\frac{1}{q}}^{2}f \bigr) ( x ) & =\frac{pq ( D_{p,q}f ) ( \frac{x}{pq} ) -pq ( D_{p,q}f ) ( \frac{x}{pq} ) }{ ( \frac{1}{p}-\frac{1}{q}) x} \\ & =\frac{ ( pq ) ^{2} [ ( D_{p,q}f ) ( \frac{x}{pq^{2}} ) - ( D_{p,q}f ) ( \frac{x}{pq} ) ] }{( p-q ) x} \\ & =p^{2}q^{2} \bigl( D_{p,q}^{2}f \bigr) \biggl( \frac{x}{p^{2}q^{2}} \biggr) . \end{aligned}$$
Continuing the process, we readily observe that
$$ \bigl( D_{\frac{1}{p},\frac{1}{q}}^{n}f \bigr) ( x ) =p^{n}q^{n} \bigl( D_{p,q}^{n}f \bigr) \biggl( \frac{x}{p^{n}q^{n}} \biggr) . $$
(2.5)
From Theorem 4, we thus conclude that
$$ f ( x ) =\sum_{k=0}^{n} \begin{bmatrix} n\\ k \end{bmatrix} _{p,q}q^{k ( k-n ) }p^{\binom{k+1}{2}} ( qx-px ) ^{k} \bigl( D_{p,q}^{k}f \bigr) \biggl( \frac{xp^{n-k}}{q^{k}} \biggr) , $$
which evidently proves Corollary 2. □

3 Conclusion

We have considered \((p,q)\)-analogs of several results investigated recently by Sofonea [1]. We have also given the \((p,q)\)-Leibniz rule and stated the \((p,q)\)-Leibniz rule by means of divided differences. Moreover, we have shown that a function f at a point \(q^{n}x\) can be generated by a linear combination of the \((p,q)\)-derivatives of order k. In the case when \(p=1\), the results derived in this paper would correspond to those based upon the relatively more familiar q-numbers.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.
Literatur
2.
Zurück zum Zitat Sofonea, DF: Numerical analysis and q-calculus. I. Octogon 11, 151-156 (2003) MathSciNet Sofonea, DF: Numerical analysis and q-calculus. I. Octogon 11, 151-156 (2003) MathSciNet
3.
Zurück zum Zitat Srivastava, HM: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011) MathSciNet Srivastava, HM: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011) MathSciNet
4.
Zurück zum Zitat Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) MATH Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) MATH
5.
Zurück zum Zitat Victor, K, Pokman, C: Quantum Calculus. Springer, New York (2002) MATH Victor, K, Pokman, C: Quantum Calculus. Springer, New York (2002) MATH
6.
Zurück zum Zitat Gupta, V: \((p,q)\)-Baskakov-Kantorovich operators. Appl. Math. Inf. Sci. 10(4), 1551-1556 (2016) CrossRef Gupta, V: \((p,q)\)-Baskakov-Kantorovich operators. Appl. Math. Inf. Sci. 10(4), 1551-1556 (2016) CrossRef
7.
Zurück zum Zitat Milovanović, GV, Gupta, V, Malik, N: \((p,q)\)-beta functions and applications in approximation. Bol. Soc. Mat. Mexicana (2016). arXiv:1602.06307v2 [math.CA] Milovanović, GV, Gupta, V, Malik, N: \((p,q)\)-beta functions and applications in approximation. Bol. Soc. Mat. Mexicana (2016). arXiv:​1602.​06307v2 [math.CA]
8.
Zurück zum Zitat Chakrabarti, R, Jagannathan, R: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24, L711 (1991) MathSciNetCrossRefMATH Chakrabarti, R, Jagannathan, R: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24, L711 (1991) MathSciNetCrossRefMATH
9.
Zurück zum Zitat Jagannathan, R, Rao, KS: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv:math/0602613 [math.NT] Jagannathan, R, Rao, KS: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv:​math/​0602613 [math.NT]
10.
Zurück zum Zitat Corcino, RB: On \(P,Q\)-binomial coefficients. Electron. J. Comb. Number Theory 8, Article ID A29 (2008) MathSciNetMATH Corcino, RB: On \(P,Q\)-binomial coefficients. Electron. J. Comb. Number Theory 8, Article ID A29 (2008) MathSciNetMATH
11.
Zurück zum Zitat Sadjang, PN: On the fundamental theorem of (\(p,q\))-calculus and some \((p,q)\)-Taylor formulas. arXiv:1309.3934 [math.QA] Sadjang, PN: On the fundamental theorem of (\(p,q\))-calculus and some \((p,q)\)-Taylor formulas. arXiv:​1309.​3934 [math.QA]
Metadaten
Titel
A certain -derivative operator and associated divided differences
verfasst von
Serkan Araci
Uğur Duran
Mehmet Acikgoz
Hari M Srivastava
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1240-8

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe