2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Cloud Broker and Cloudlet for Workflow Scheduling
At present, the mobile market accounts for the largest portion in IT industry, and its proportion is increasing rapidly. With the rapid increase, mobile services are also becoming bigger and more complex. Therefore, with the development of network technology such as 5G, there exist on-going research on mobile services that follows client-server models capable of overcoming the limitations of computational performance and storage in mobile devices.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
SBD, Connected Car Global Forecast 2015 (2015)
2.
H. Shimada, A. Yamaguchi, H. Takada, K. Sato, Implementation and Evaluation of Local Dynamic Map in Safety Driving Systems. J. Transp. Technol.
5 (2015)
3.
CARASSO (Online),
https://aws.amazon.com/solutions/case-studies/bmw
4.
Compass4D (Online),
http://www.compass4d.eu
5.
Drivenet (Online),
http://drivenet.pilotlab.co
6.
SAFESPOT (Online),
www.safespot-eu.org
7.
Blue Link (Online),
http://bluelink.hyundai.com
8.
9.
Uconnect (Online),
http://www.driveuconnect.com
10.
Android Auto (Online),
https://www.android.com/auto
11.
CarPlay (Online),
http://www.apple.com/ios/carplay
12.
Dragon Drive (Online),
http://www.nuance.com/for-business/mobile-solutions/dragon-drive/index.htm
13.
Sirius (Online),
http://sirius.clarity-lab.org/
14.
S. Kumar, S. Gollakota, D. Katabi, A cloud-assisted design for autonomous driving, in
Proceedings of MCC’12
15.
A. Ashok, P. Steenkiste, F. Bai, Enabling vehicular applications using cloud services through adaptive computation offloading, in
Proceedings of MCS’12
16.
Pivotal (Online),
https://pivotal.io
17.
Blind Motion (Online),
https://blindmotion.github.io/2015/04/11/ml-in-navigation
18.
K. Kumar, Y.H. Lu, Cloud computing for mobile users: can offloading computation save energy? Computer
43(4) (2010)
19.
E. Lagerspetz, S. Tarkoma, Mobile search and the cloud: the benefits of offloading, in
Proceedings of PERCOM Workship (2011)
20.
S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, ThinkAir: dynamic resource allocation and parallel execution in the cloud for mobile code offloading, in
Proceedings of INFOCOM’12
21.
A. Saarinen, M. Siekkinen, Y. Xiao, J.K. Nurminen, M. Kemppainen, P. Hui, SmartDiet: offloading popular apps to save energy, in
Proceedings of SIGCOMM’12
22.
S. Simanta, G.A. Lewis, E. Morris, K. Ha, M. Satyanarayanan, A reference architecture for mobile code offload in hostile environments, in
Proceedings of WICSA’12
23.
M.V. Barbera, S. Kosta, A. Mei, J. Stefa, To offload or not to offload? The bandwidth and energy costs of mobile cloud computing, in
Proceedings of INFOCOM’13
24.
Y. Nimmagadda, K. Kumar, Y.H. Lu, C.S.G. Lee, Real-time moving object recognition and tracking using computation offloading, in
Proceedings of IROS’10
25.
M.Y. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, R. Govindan, Odessa: enabling interactive perception applications on mobile devices, in
Proceedings of MobiSys’11
26.
Y. Zhang, H. Liu, L. Jiao, X. Fu, To offload or not to offload: an efficient code partition algorithm for mobile cloud computing, in
Proceedings of ClOUDNET’12
27.
H. Flores, S. Srirama, Adaptive code offloading for mobile cloud applications: exploiting fuzzy sets and evidence-based learning, in
Proceedings of MCS’13
28.
F. Xia, F. Ding, J. Li, X. Kong, L.T. Yang, J. Ma, Phone2Cloud: Exploiting computation offloading for energy saving on smartphones in mobile cloud computing. Inf. Syst. Front.
16(1) (2014)
29.
P. Cooper, U. Dolinsky, A.F. Donaldson, A. Richards, C. Riley, G. Russell, Offload—automating code migration to heterogeneous multicore systems, in
Proceedings of HiPEAC’10
30.
H.Y. Chen, Y.H. Lin, C.M. Cheng, COCA: computation offload to clouds using AOP, in
Proceedings of CCGrid’12
31.
M.S. Gordon, D.A. Jamshidi, S. Mahlke, Z. M. Mao, X. Chen, COMET: Code Offload by Migrating Execution Transparently, in
Proceedings of OSDI’12
32.
D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile computing. IEEE Trans. Wireless Commun.
11(6) (2012)
33.
E. Cuervo, A. Balasubramanian, D.K. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, MAUI: making smartphones last longer with code offload, in
Proceedings of MobiSys’10
34.
B.G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between mobile device and cloud, in
Proceedings of EuroSys’11
35.
D. Kovachev, T. Yu, R. Klamma, Adaptive computation offloading from mobile devices into the cloud, in
Proceedings of ISPA’12
36.
Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, S. Yang, Refactoring android java code for on-demand computation offloading, in
Proceedings of OOPSLA’12
37.
H. Wu, Q. Wang, K. Wolter, Tradeoff between performance improvement and energy saving in mobile cloud offloading systems, in
Proceedings of ICC’13
38.
C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, E. Zegura, COSMOS: computation offloading as a service for mobile devices, in
Proceedings of MobiHoc’14
39.
B. Zhou et al., A context sensitive offloading scheme for mobile cloud computing service, in
Proceedings of CLOUD’15
40.
H. Kim, J. Han, S.-H. Kim, J. Choi, D. Yoon, M. Jeon, E. Yang, N. Pham, S. Woo, D. Kim, C.-H. Youn, IsV2C: an integrated road traffic-network-cloud simulator for V2C connected car services,
submitted to SCC’17
41.
OpenStreetMap (Online),
http://www.openstreetmap.org/
42.
SUMO (Online),
http://www.sumo.dlr.de/
43.
ns-3 (Online),
http://www.nsnam.org/
44.
45.
Amazon EC2 (Online), htttp://aws.amazon.com/ec2
46.
Google Compute Engine (Online),
http://cloud.google.com
47.
Microsoft Azure (Online),
http://azure.microsoft.com
48.
J. Hamilton, Cost of power in large-scale data centers,
Keynote, at ACM SIGMETRICS 2009 (Online),
http://perspectives.mvdirona.com/2008/11/cost-of-power-in-large-scale-data-centers
49.
Universal Mobile Telecommunications System (UMTS); Packet Data Convergence Protocol (PDCP) specification, Technical Specification, ETSI TS 125 323 V5.0.0 (2002)
50.
X. Zhang, Z. Hu, X. Du, Probabilistic inverse simulation and its application in vehicle accident reconstruction. J. Mech. Des.
135(12) (2013)
51.
T. Flessa, E. McGookin, D. Thomson, Numerical stability of inverse simulation algorithms applied to planetary rover navigation, in
Proceedings of MED’16
52.
Y. Liu, J. Jiang, Inverse dynamics of vehicle minimum time manoeuvre for collision avoidance problem. Int. J. Vehicle Saf.
9(2) (2016)
53.
S.I. You, J.Y.J. Chow, S.G. Ritchie, Inverse vehicle routing for activity-based urban freight forecast modeling and city logistics. Transp. A Transport Sci.
12(7) (2016)
54.
L. Zha, D. Lord, Y. Zou, The Poisson inverse Gaussian (PIG) generalized linear regression model for analyzing motor vehicle crash data. J. Transp. Saf. Secur.
8(1) (2016)
55.
OpenStack (Online),
http://www.openstack.org/
56.
Naver MAPS API (Online),
http://navermaps.github.io/maps.js/
57.
Cisco, Cisco visual networking index: forecast and methodology (2015) (Online),
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
58.
C. Jennings, A. Narayanan, D. Burnett, A. Bergkvist, WebRTC 1.0: Real-time communication between browsers,
W3C, W3C Ed. Draft. Aug, no. May, 2014
59.
M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, The Secure Real-time Transport Protocol (SRTP).
Internet Soc. RFC 3711
1, 1–56 (2004)
60.
F. Wang, J. Liu, M. Chen, CALMS: Cloud-assisted live media streaming for globalized demands with time/region diversities, in
Proceedings of INFOCOM’12
61.
A. Amirante, T. Castaldi, L. Miniero, S.P. Romano, Janus: a general purpose WebRTC gateway, in
Proceedings of the Conference on Principles, Systems and Applications of IP Telecommunications, (2014), pp. 7:1–7:8
62.
W.-J. Kim, H. Jang, G.-B. Choi, I.-S. Hwang, C.-H. Youn, A WebRTC based live streaming service platform with dynamic resource provisioning in cloud, in
Proceedings of TENCON’16
63.
Docker (Online),
https://www.docker.com
64.
RabbitMQ (Online),
https://www.rabbitmq.com
65.
Docker-Swarm (Online),
https://www.docker.com/products/docker-swarm
66.
cAdvisor (Online),
https://github.com/google/cadvisor
67.
influxDB (Online),
https://influxdata.com/
68.
E. Diaconescu, The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comput. Res.
3(3), 182–191 (2008)
69.
S. Dutta, T. Taleb, A. Ksentini, QoE-aware elasticity support in cloud-native 5G systems, in
Proceedings of ICC’16
70.
Amazon EC2,
https://aws.amazon.com/ko/directconnect
71.
R. Wang, M. Xue, K. Chen, Z. Li, T. Dong, Y. Sun, BMA: Bandwidth allocation management for distributed systems under cloud gaming, in
ICCSN (2015)
72.
X. Qi, Q. Yang, D. Nguyen, G. Zhou, G. Peng, LBVC: towards low-bandwidth video chat on smartphones, in
MMSys (2015)
73.
H. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, A. Venkataramani, A structural approach to latency prediction, in
SIGCOMM (2006)
74.
Y. Wu, B. Li, L. Zhang, Z. Li, F.C.M. Lau, Scaling social media applications into geo-distributed clouds. IEEE/ACM Trans. Networking
23(3) (2015)
75.
H. Kim, J. Han, S.-H. Kim, J. Choi, D. Yoon, M. Jeon, E. Yang, N. Pham, S. Woo, D. Kim, C.-H. Youn, IsV2C: an integrated road traffic-network-cloud simulator for V2C connected car services, in
submitted to SCC’17
76.
H. Shimada, A. Yamaguchi, H. Takada, Implementation and evaluation of local dynamic map in safety driving systems. J. Transp. Technol.
5, 102–112 (2015). (April)
CrossRef
77.
J. Hauswald, L. Tang, J. Mars, M.A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana, R.G.G. Dreslinski, T. Mudge, V. Petrucci, Sirius: an open end-to-end voice and vision personal assistant and its implications for future warehouse scale computers, in
Proceedings of ASPLOS’15
- Titel
- A Cloud Broker System for Connected Car Services with an Integrated Simulation Framework
- DOI
- https://doi.org/10.1007/978-981-10-5071-8_4
- Autoren:
-
Chan-Hyun Youn
Min Chen
Patrizio Dazzi
- Verlag
- Springer Singapore
- Sequenznummer
- 4
- Kapitelnummer
- Chapter 4