Skip to main content
Erschienen in: Cognitive Computation 4/2009

01.12.2009

A Cognitive Model of Saliency, Attention, and Picture Scanning

verfasst von: Vassilis Cutsuridis

Erschienen in: Cognitive Computation | Ausgabe 4/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To view and understand the visual world, we shift our gaze from one location to another about three times per second. These rapid changes in gaze direction result from very fast eye movements called saccades. Visual information is acquired only during fixations, stationary periods between saccades. Active visual search of pictures is the process of active scanning of the visual environment for a particular target among distracters or for the extraction of its meaning. This article discusses a cognitive model of saliency, overt attention, and natural picture scanning that unravels the neurocomputational mechanisms of how human gaze control operates during active real-world scene viewing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Berman RA, Wurtz RH. Exploring the pulvinar path to visual cortex. Prog Brain Res. 2008;171:467–73.CrossRefPubMed Berman RA, Wurtz RH. Exploring the pulvinar path to visual cortex. Prog Brain Res. 2008;171:467–73.CrossRefPubMed
2.
Zurück zum Zitat Carpenter GA, Grossberg S. Adaptive resonance theory. In: Arbib MA, editor. The handbook of brain theory and neural networks. 2nd ed. Cambridge: MIT Press; 2003. p. 87–90. Carpenter GA, Grossberg S. Adaptive resonance theory. In: Arbib MA, editor. The handbook of brain theory and neural networks. 2nd ed. Cambridge: MIT Press; 2003. p. 87–90.
3.
Zurück zum Zitat Chelazzi L, Duncan J, Miller EK, Desimone R. Responses of neurons in the inferior temporal cortex during memory guided visual search. J Neurophysiol. 1998;80(6):2918–40.PubMed Chelazzi L, Duncan J, Miller EK, Desimone R. Responses of neurons in the inferior temporal cortex during memory guided visual search. J Neurophysiol. 1998;80(6):2918–40.PubMed
4.
Zurück zum Zitat Coizet V, Comoli E, Westby GW, Redgrave P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci. 2003;17(1):28–40.CrossRefPubMed Coizet V, Comoli E, Westby GW, Redgrave P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci. 2003;17(1):28–40.CrossRefPubMed
5.
Zurück zum Zitat Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, et al. A direct projection from the superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci. 2003;6(9):974–80.CrossRefPubMed Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, et al. A direct projection from the superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci. 2003;6(9):974–80.CrossRefPubMed
6.
Zurück zum Zitat Cutsuridis V, Kahramanoglou I, Perantonis S, Evdokimidis I, Smyrnis N. A biophysical model of decision making in an antisaccade task through variable climbing activity. In: Duch W, et al., editors. ICANN 2005. LNCS, vol. 3695. Berlin: Springer; 2005. p. 205–10. Cutsuridis V, Kahramanoglou I, Perantonis S, Evdokimidis I, Smyrnis N. A biophysical model of decision making in an antisaccade task through variable climbing activity. In: Duch W, et al., editors. ICANN 2005. LNCS, vol. 3695. Berlin: Springer; 2005. p. 205–10.
7.
Zurück zum Zitat Cutsuridis V, Perantonis S. A neural network model of Parkinson’s disease bradykinesia. Neural Netw. 2006;19(4):354–74.CrossRefPubMed Cutsuridis V, Perantonis S. A neural network model of Parkinson’s disease bradykinesia. Neural Netw. 2006;19(4):354–74.CrossRefPubMed
8.
Zurück zum Zitat Cutsuridis V. Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia. In: Kollias SD, Stafylopatis A, Duch W, Oja E, editors. ICANN 2006. LNCS, vol. 4131. Heidelberg: Springer; 2006. p. 583–91. Cutsuridis V. Neural model of dopaminergic control of arm movements in Parkinson’s disease bradykinesia. In: Kollias SD, Stafylopatis A, Duch W, Oja E, editors. ICANN 2006. LNCS, vol. 4131. Heidelberg: Springer; 2006. p. 583–91.
9.
Zurück zum Zitat Cutsuridis V. Does reduced spinal reciprocal inhibition lead to co-contraction of antagonist motor units? A modeling study. Int J Neural Syst. 2007;17(4):319–27.CrossRefPubMed Cutsuridis V. Does reduced spinal reciprocal inhibition lead to co-contraction of antagonist motor units? A modeling study. Int J Neural Syst. 2007;17(4):319–27.CrossRefPubMed
10.
Zurück zum Zitat Cutsuridis V, Kahramanoglou I, Smyrnis N, Evdokimidis I, Perantonis S. A neural variable integrator model of decision making in an antisaccade task. Neurocomputing. 2007;70(7–9):1390–402.CrossRef Cutsuridis V, Kahramanoglou I, Smyrnis N, Evdokimidis I, Perantonis S. A neural variable integrator model of decision making in an antisaccade task. Neurocomputing. 2007;70(7–9):1390–402.CrossRef
11.
Zurück zum Zitat Cutsuridis V, Smyrnis N, Evdokimidis I, Perantonis S. A neural network model of decision making in an antisaccade task by the superior colliculus. Neural Netw. 2007;20(6):690–704.CrossRefPubMed Cutsuridis V, Smyrnis N, Evdokimidis I, Perantonis S. A neural network model of decision making in an antisaccade task by the superior colliculus. Neural Netw. 2007;20(6):690–704.CrossRefPubMed
12.
Zurück zum Zitat Cutsuridis V. A bio-inspired system architecture of an active visual search model. In: Kurkova V, Neruda R, Koutnik J, editors. ICANN 2008, LNCS vol. 5164. Berlin: Springer; 2008. p. 248–57. Cutsuridis V. A bio-inspired system architecture of an active visual search model. In: Kurkova V, Neruda R, Koutnik J, editors. ICANN 2008, LNCS vol. 5164. Berlin: Springer; 2008. p. 248–57.
13.
Zurück zum Zitat Cutsuridis V. Neural network modeling of voluntary single joint movement organization. I. Normal conditions. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P, editors. Computational neuroscience. Berlin: Springer-Verlag; 2010. Cutsuridis V. Neural network modeling of voluntary single joint movement organization. I. Normal conditions. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P, editors. Computational neuroscience. Berlin: Springer-Verlag; 2010.
14.
Zurück zum Zitat Cutsuridis V. Neural network modeling of voluntary single joint movement organization. II. Parkinson’s disease. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P, editors. Computational neuroscience. Berlin: Springer-Verlag; 2010. Cutsuridis V. Neural network modeling of voluntary single joint movement organization. II. Parkinson’s disease. In: Chaovalitwongse WA, Pardalos P, Xanthopoulos P, editors. Computational neuroscience. Berlin: Springer-Verlag; 2010.
15.
Zurück zum Zitat Deco G, Schürmann B. A neuro-cognitive visual system for object recognition based on testing of interactive attentional top-down hypotheses. Perception. 2000;29(10):1249–64.CrossRefPubMed Deco G, Schürmann B. A neuro-cognitive visual system for object recognition based on testing of interactive attentional top-down hypotheses. Perception. 2000;29(10):1249–64.CrossRefPubMed
16.
Zurück zum Zitat Desimone R, Duncan J. Neural mechanisms of selective visual attention. Ann Rev Neurosci. 1995;18:193–222.CrossRefPubMed Desimone R, Duncan J. Neural mechanisms of selective visual attention. Ann Rev Neurosci. 1995;18:193–222.CrossRefPubMed
17.
Zurück zum Zitat Dommett E, Coizet V, Blaha CD, Martindale J, Lefebre V, Walton N, et al. How visual stimuli activate dopaminergic neurons at short latency. Science. 2005;307(5714):1476–9.CrossRefPubMed Dommett E, Coizet V, Blaha CD, Martindale J, Lefebre V, Walton N, et al. How visual stimuli activate dopaminergic neurons at short latency. Science. 2005;307(5714):1476–9.CrossRefPubMed
18.
Zurück zum Zitat Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task relevant information. Nat Neurosci. 2005;8(12):1784–90.CrossRefPubMed Egner T, Hirsch J. Cognitive control mechanisms resolve conflict through cortical amplification of task relevant information. Nat Neurosci. 2005;8(12):1784–90.CrossRefPubMed
19.
Zurück zum Zitat Fazl A, Grossberg S, Mingolla E. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds. Cogn Psychol. 2009;58(1):1–48.CrossRefPubMed Fazl A, Grossberg S, Mingolla E. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds. Cogn Psychol. 2009;58(1):1–48.CrossRefPubMed
20.
Zurück zum Zitat Findlay JM, Gilchrist ID. Active vision: the psychology of looking and seeing. Oxford: Oxford University Press; 2003. Findlay JM, Gilchrist ID. Active vision: the psychology of looking and seeing. Oxford: Oxford University Press; 2003.
21.
Zurück zum Zitat Foxe JJ, Simpson GV. Flow of activation from V1 to frontal cortex in humans. Exp Brain Res. 2002;142:139–50.CrossRefPubMed Foxe JJ, Simpson GV. Flow of activation from V1 to frontal cortex in humans. Exp Brain Res. 2002;142:139–50.CrossRefPubMed
22.
Zurück zum Zitat Hamker FH. The re-entry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex and areas V4, IT of attention and eye movement. Cereb Cortex. 2005;15:431–47.CrossRefPubMed Hamker FH. The re-entry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex and areas V4, IT of attention and eye movement. Cereb Cortex. 2005;15:431–47.CrossRefPubMed
23.
Zurück zum Zitat Hanes DP, Wurtz RH. Interaction of frontal eye field and superior colliculus for saccade generation. J Neurophys. 2001;85:804–15. Hanes DP, Wurtz RH. Interaction of frontal eye field and superior colliculus for saccade generation. J Neurophys. 2001;85:804–15.
24.
Zurück zum Zitat Henderson JM, Hollingworth A. The role of fixation position in detecting scene changes across saccades. Psychol Sci. 1999;50:243–71. Henderson JM, Hollingworth A. The role of fixation position in detecting scene changes across saccades. Psychol Sci. 1999;50:243–71.
25.
Zurück zum Zitat Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulate. J Neurophys. 1983;49:1230–301. Hikosaka O, Wurtz RH. Visual and oculomotor functions of monkey substantia nigra pars reticulate. J Neurophys. 1983;49:1230–301.
26.
Zurück zum Zitat Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:954–78. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:954–78.
27.
Zurück zum Zitat Itti L, Koch C. Computational modelling of visual attention. Nat Neurosci. 2001;2:194–203.CrossRef Itti L, Koch C. Computational modelling of visual attention. Nat Neurosci. 2001;2:194–203.CrossRef
28.
Zurück zum Zitat Itti L, Koch C. A saliency based search mechanism for overt and covert shifts of visual attention. Vision Res. 2000;40:1489–506.CrossRefPubMed Itti L, Koch C. A saliency based search mechanism for overt and covert shifts of visual attention. Vision Res. 2000;40:1489–506.CrossRefPubMed
30.
Zurück zum Zitat Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1995;4:219–27. Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol. 1995;4:219–27.
31.
Zurück zum Zitat Kusunoki M, Gottlieb J, Goldberg ME. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion and task relevance. Vision Res. 2000;40:1459–68.CrossRefPubMed Kusunoki M, Gottlieb J, Goldberg ME. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion and task relevance. Vision Res. 2000;40:1459–68.CrossRefPubMed
32.
Zurück zum Zitat Lleras A, Von Mühlenen A. Spatial context and top-down strategies in visual search. Spat Vis. 2004;17(4–5):465–82.CrossRefPubMed Lleras A, Von Mühlenen A. Spatial context and top-down strategies in visual search. Spat Vis. 2004;17(4–5):465–82.CrossRefPubMed
33.
Zurück zum Zitat McHaffie JG, Jiang H, May PJ, Coizet V, Overton PG, Stein BE, et al. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience. 2006;138(1):221–34.CrossRefPubMed McHaffie JG, Jiang H, May PJ, Coizet V, Overton PG, Stein BE, et al. A direct projection from superior colliculus to substantia nigra pars compacta in the cat. Neuroscience. 2006;138(1):221–34.CrossRefPubMed
34.
Zurück zum Zitat Mohler CW, Wurtz RH. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J Neurophyiol. 1977;40:74–94. Mohler CW, Wurtz RH. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J Neurophyiol. 1977;40:74–94.
35.
Zurück zum Zitat Olshausen BA, Anderson CH, van Essen DC. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993;13(11):4700–19.PubMed Olshausen BA, Anderson CH, van Essen DC. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993;13(11):4700–19.PubMed
36.
Zurück zum Zitat Reynolds JH, Desimone R. The role of neural mechanisms of attention in solving the binding problem. Neuron. 1999;24(1):19–29.CrossRefPubMed Reynolds JH, Desimone R. The role of neural mechanisms of attention in solving the binding problem. Neuron. 1999;24(1):19–29.CrossRefPubMed
37.
Zurück zum Zitat Redgrave P, Gurney K. The short latency dopamine signal: a role in discovering novel actions. Nat Neurosci. 2006;7:967–75.CrossRef Redgrave P, Gurney K. The short latency dopamine signal: a role in discovering novel actions. Nat Neurosci. 2006;7:967–75.CrossRef
38.
Zurück zum Zitat Redgrave P, Gurney K, Reinolds J. What is reinforced by the phasic dopamine signals? Brain Res Rev. 2008;58(2):322–39.CrossRefPubMed Redgrave P, Gurney K, Reinolds J. What is reinforced by the phasic dopamine signals? Brain Res Rev. 2008;58(2):322–39.CrossRefPubMed
39.
Zurück zum Zitat Rybak IA, Gusakova VI, Golovan AV, Podladchikova LN, Shevtsova NA. A model of attention-guided visual perception and recognition. Vision Res. 1998;38(15–16):2387–400.CrossRefPubMed Rybak IA, Gusakova VI, Golovan AV, Podladchikova LN, Shevtsova NA. A model of attention-guided visual perception and recognition. Vision Res. 1998;38(15–16):2387–400.CrossRefPubMed
40.
Zurück zum Zitat Schall JD, Hanes DP, Thompson KG, King DJ. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci. 1995;15:6905–18.PubMed Schall JD, Hanes DP, Thompson KG, King DJ. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci. 1995;15:6905–18.PubMed
41.
Zurück zum Zitat Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye field and superior colliculus ablations. J Neurophys. 1980;44:1175–89. Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye field and superior colliculus ablations. J Neurophys. 1980;44:1175–89.
42.
Zurück zum Zitat Schultz W. Predictive reward signal of dopamine neurons. J Neurophys. 1998;80:1–27. Schultz W. Predictive reward signal of dopamine neurons. J Neurophys. 1998;80:1–27.
43.
Zurück zum Zitat Sommer MA, Wurtz RH. Frontal eye field neurons orthodromically activated from the superior colliculus. J Neurophys. 1998;80:3331–3. Sommer MA, Wurtz RH. Frontal eye field neurons orthodromically activated from the superior colliculus. J Neurophys. 1998;80:3331–3.
44.
Zurück zum Zitat Tavassoli A, Linde I, Bovik AC, Cormack LK. Eye movements selective for spatial frequency and orientation during active visual search. Vision Res. 2009;49(2):173–81.CrossRefPubMed Tavassoli A, Linde I, Bovik AC, Cormack LK. Eye movements selective for spatial frequency and orientation during active visual search. Vision Res. 2009;49(2):173–81.CrossRefPubMed
45.
Zurück zum Zitat Taylor JG, Hartley M, Taylor N, Panchev C, Kasderidis S. A hierarchical attention-based neural network architecture, based on human brain guidance, for perception, conceptualisation, action and reasoning. Image Vis Comput. 2009;27:1641–57.CrossRef Taylor JG, Hartley M, Taylor N, Panchev C, Kasderidis S. A hierarchical attention-based neural network architecture, based on human brain guidance, for perception, conceptualisation, action and reasoning. Image Vis Comput. 2009;27:1641–57.CrossRef
46.
Zurück zum Zitat Thompson KG, Bichot NP. A visual saliency map in the primate frontal eye field. Prog Brain Res. 2005;147:251–62.PubMed Thompson KG, Bichot NP. A visual saliency map in the primate frontal eye field. Prog Brain Res. 2005;147:251–62.PubMed
47.
Zurück zum Zitat Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381(6582):520–2.CrossRefPubMed Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381(6582):520–2.CrossRefPubMed
48.
Zurück zum Zitat Tsotsos JK, Culhane S, Wai W, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artif Intell. 1995;78(1–2):507–47.CrossRef Tsotsos JK, Culhane S, Wai W, Lai Y, Davis N, Nuflo F. Modeling visual attention via selective tuning. Artif Intell. 1995;78(1–2):507–47.CrossRef
49.
Zurück zum Zitat Viviani P. Eye movements in visual search. Cognitive, perceptual and motor control aspects. In: Kowler E, editor. Eye movements and their role in visual and cognitive processes. Amsterdam: Elsevier; 1990. p. 353–93. Viviani P. Eye movements in visual search. Cognitive, perceptual and motor control aspects. In: Kowler E, editor. Eye movements and their role in visual and cognitive processes. Amsterdam: Elsevier; 1990. p. 353–93.
Metadaten
Titel
A Cognitive Model of Saliency, Attention, and Picture Scanning
verfasst von
Vassilis Cutsuridis
Publikationsdatum
01.12.2009
Verlag
Springer-Verlag
Erschienen in
Cognitive Computation / Ausgabe 4/2009
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-009-9024-9

Weitere Artikel der Ausgabe 4/2009

Cognitive Computation 4/2009 Zur Ausgabe

BriefCommunication

Sub-Symbols and Icons