Skip to main content
Erschienen in: Cognitive Computation 6/2018

12.09.2018

A Cognitively Inspired Hybridization of Artificial Bee Colony and Dragonfly Algorithms for Training Multi-layer Perceptrons

Erschienen in: Cognitive Computation | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this article is twofold. On the one hand, we introduce a cognitively inspired hybridization metaheuristic that combines the strengths of two existing metaheuristics: the artificial bee colony (ABC) algorithm and the dragonfly algorithm (DA). The aim of this hybridization is to reduce the problems of slow convergence and trapping into local optima, by striking a good balance between global and local search components of the constituent algorithms. On the other hand, we use the proposed metaheuristic to train a multi-layer perceptron (MLP) as an alternative to existing traditional- and metaheuristic-based learning algorithms; this is for the purpose of improving overall accuracy by optimizing the set of MLP weights and biases. The proposed hybrid ABC/DA (HAD) algorithm comprises three main components: the static and dynamic swarming behavior phase in DA and two global search phases in ABC. The first one performs global search (DA phase), the second one performs local search (onlooker phase), and the third component implements global search (modified scout bee phase). The resultant metaheuristic optimizer is employed to train an MLP to reach a set of weights and biases that can yield high performance compared to traditional learning algorithms or even other metaheuristic optimizers. The proposed algorithm was first evaluated using 33 benchmark functions to test its performance in numerical optimization problems. Later, using HAD for training MLPs was evaluated against six standard classification datasets. In both cases, the performance of HAD was compared with the performance of several new and old metaheuristic methods from swarm intelligence and evolutionary computing. Experimental results show that HAD algorithm is clearly superior to the standard ABC and DA algorithms, as well as to other well-known algorithms, in terms of achieving the best optimal value, convergence speed, avoiding local minima and accuracy of trained MLPs. The proposed algorithm is a promising metaheuristic technique for general numerical optimization and for training MLPs. Specific applications and use cases are yet to be explored fully but they are supported by the encouraging results in this study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim S-S, McLoone S, Byeon J-H, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRef Kim S-S, McLoone S, Byeon J-H, Lee S, Liu H. Cognitively inspired artificial bee colony clustering for cognitive wireless sensor networks. Cogn Comput. 2017;9(2):207–24.CrossRef
2.
Zurück zum Zitat Fernández-Caballero A, González P, Navarro E. Cognitively-inspired computing for gerontechnology. Cogn Comput. 2016;8(2):297–8.CrossRef Fernández-Caballero A, González P, Navarro E. Cognitively-inspired computing for gerontechnology. Cogn Comput. 2016;8(2):297–8.CrossRef
3.
Zurück zum Zitat Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems. Press: Oxford Univ; 1999. Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems. Press: Oxford Univ; 1999.
4.
Zurück zum Zitat Mavrovouniotis M, Li C, Yang S. A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput. 2017;33:1–17.CrossRef Mavrovouniotis M, Li C, Yang S. A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput. 2017;33:1–17.CrossRef
5.
Zurück zum Zitat Chen J, Zeng Z, Jiang P, Tang H. Deformation prediction of landslide based on functional network. Neurocomputing. 2015;149:151–7.CrossRef Chen J, Zeng Z, Jiang P, Tang H. Deformation prediction of landslide based on functional network. Neurocomputing. 2015;149:151–7.CrossRef
6.
Zurück zum Zitat Ghanem WAHM, Jantan A. Using hybrid artificial bee colony algorithm and particle swarm optimization for training feed-forward neural networks. J Theor Appl Inf Technol. 2014;67(3) Ghanem WAHM, Jantan A. Using hybrid artificial bee colony algorithm and particle swarm optimization for training feed-forward neural networks. J Theor Appl Inf Technol. 2014;67(3)
7.
Zurück zum Zitat Mirjalili SA, Hashim SZM, Sardroudi HM. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput. 2012;218(22):11125–37. Mirjalili SA, Hashim SZM, Sardroudi HM. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput. 2012;218(22):11125–37.
8.
Zurück zum Zitat Ghanem WAHM, Jantan A. Novel multi-objective artificial bee Colony optimization for wrapper based feature selection in intrusion detection. Int J Adv Soft Comput Appl. 2016;8(1) Ghanem WAHM, Jantan A. Novel multi-objective artificial bee Colony optimization for wrapper based feature selection in intrusion detection. Int J Adv Soft Comput Appl. 2016;8(1)
9.
Zurück zum Zitat Bandaru S, Ng AHC, Deb K. Data mining methods for knowledge discovery in multi-objective optimization: Part A-Survey. Expert Syst Appl. 2017;70:139–59.CrossRef Bandaru S, Ng AHC, Deb K. Data mining methods for knowledge discovery in multi-objective optimization: Part A-Survey. Expert Syst Appl. 2017;70:139–59.CrossRef
10.
Zurück zum Zitat Ali MH, Al Mohammed BAD, Ismail A, Zolkipli MF. A new intrusion detection system based on Fast Learning Network and Particle swarm optimization. IEEE Access. 2018;6:20255–61.CrossRef Ali MH, Al Mohammed BAD, Ismail A, Zolkipli MF. A new intrusion detection system based on Fast Learning Network and Particle swarm optimization. IEEE Access. 2018;6:20255–61.CrossRef
11.
Zurück zum Zitat Ghanem WAHM, Jantan A. New approach to improve anomaly detection using a neural network optimized by hybrid abc and pso algorithms. Pak J Stat. 2018;34(1) Ghanem WAHM, Jantan A. New approach to improve anomaly detection using a neural network optimized by hybrid abc and pso algorithms. Pak J Stat. 2018;34(1)
12.
Zurück zum Zitat Han X, Chang X, Quan L, Xiong X, Li J, Zhang Z, et al. Feature subset selection by gravitational search algorithm optimization. Inf Sci. 2014;281:128–46.CrossRef Han X, Chang X, Quan L, Xiong X, Li J, Zhang Z, et al. Feature subset selection by gravitational search algorithm optimization. Inf Sci. 2014;281:128–46.CrossRef
13.
Zurück zum Zitat Aljarah I, Al-Zoubi A’M, Faris H, Hassonah MA, Mirjalili S, Saadeh H. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput. 2018:1–18. Aljarah I, Al-Zoubi A’M, Faris H, Hassonah MA, Mirjalili S, Saadeh H. Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput. 2018:1–18.
14.
Zurück zum Zitat Yang, Xin-She. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg, 2010. Yang, Xin-She. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg, 2010.
15.
Zurück zum Zitat Yang, Xin-She, and Suash Deb. Cuckoo search via Lévy flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, pp. 210–214. IEEE, 2009. Yang, Xin-She, and Suash Deb. Cuckoo search via Lévy flights. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, pp. 210–214. IEEE, 2009.
16.
Zurück zum Zitat An J, Kang Q, Wang L, Qidi W. Mussels wandering optimization: an ecologically inspired algorithm for global optimization. Cogn Comput. 2013;5(2):188–99.CrossRef An J, Kang Q, Wang L, Qidi W. Mussels wandering optimization: an ecologically inspired algorithm for global optimization. Cogn Comput. 2013;5(2):188–99.CrossRef
17.
Zurück zum Zitat Eberhart, Russell, and James Kennedy. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on, pp. 39–43. IEEE, 1995. Eberhart, Russell, and James Kennedy. A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on, pp. 39–43. IEEE, 1995.
18.
Zurück zum Zitat Wang, Gai-Ge, Suash Deb, and Leandro dos S. Coelho. Elephant herding optimization. In Computational and Business Intelligence (ISCBI), 2015 3rd International Symposium on, pp. 1–5. IEEE, 2015. Wang, Gai-Ge, Suash Deb, and Leandro dos S. Coelho. Elephant herding optimization. In Computational and Business Intelligence (ISCBI), 2015 3rd International Symposium on, pp. 1–5. IEEE, 2015.
19.
Zurück zum Zitat Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst. 2015;89:228–49.CrossRef Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst. 2015;89:228–49.CrossRef
20.
Zurück zum Zitat Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67.CrossRef Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67.CrossRef
21.
Zurück zum Zitat Wang G-G, Deb S, Cui Z. Monarch butterfly optimization. Neural Comput Appl. 2015:1–20. Wang G-G, Deb S, Cui Z. Monarch butterfly optimization. Neural Comput Appl. 2015:1–20.
22.
Zurück zum Zitat Gandomi, Amir Hossein, and Amir Hossein Alavi. Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation 17, no. 12 (2012): 4831–4845. Gandomi, Amir Hossein, and Amir Hossein Alavi. Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation 17, no. 12 (2012): 4831–4845.
23.
Zurück zum Zitat Wang G-G. Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing. 2016:1–14. Wang G-G. Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing. 2016:1–14.
24.
25.
Zurück zum Zitat Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11(4):341–59.CrossRef Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11(4):341–59.CrossRef
26.
Zurück zum Zitat Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.CrossRef Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12(6):702–13.CrossRef
27.
Zurück zum Zitat Beyer H-G, Schwefel H-P. Evolution strategies–a comprehensive introduction. Nat Comput. 2002;1(1):3–52.CrossRef Beyer H-G, Schwefel H-P. Evolution strategies–a comprehensive introduction. Nat Comput. 2002;1(1):3–52.CrossRef
28.
Zurück zum Zitat Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn. 1988;3(2):95–9.CrossRef Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn. 1988;3(2):95–9.CrossRef
29.
Zurück zum Zitat Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.CrossRef Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci. 2009;179(13):2232–48.CrossRef
30.
Zurück zum Zitat Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation. 2001;76(2):60–8.CrossRef Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation. 2001;76(2):60–8.CrossRef
31.
Zurück zum Zitat Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst. 2016;96:120–33.CrossRef Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst. 2016;96:120–33.CrossRef
32.
Zurück zum Zitat Ghanem, Waheed Ali HM, and Aman Jantan. An enhanced Bat algorithm with mutation operator for numerical optimization problems" Neural Comput & Applic (2017): 1–35. Ghanem, Waheed Ali HM, and Aman Jantan. An enhanced Bat algorithm with mutation operator for numerical optimization problems" Neural Comput & Applic (2017): 1–35.
33.
Zurück zum Zitat Ghanem WAHM, Jantan A. A novel hybrid artificial bee colony with monarch butterfly optimization for global optimization problems. In: Modeling, Simulation, and Optimization. Cham: Springer; 2018. p. 27–38.CrossRef Ghanem WAHM, Jantan A. A novel hybrid artificial bee colony with monarch butterfly optimization for global optimization problems. In: Modeling, Simulation, and Optimization. Cham: Springer; 2018. p. 27–38.CrossRef
34.
Zurück zum Zitat Ghanem WAHM, Jantan A. Hybridizing Bat algorithm with modified pitch adjustment operator for numerical optimization problems. In: Modeling, Simulation, and Optimization. Cham: Springer; 2018. p. 57–69.CrossRef Ghanem WAHM, Jantan A. Hybridizing Bat algorithm with modified pitch adjustment operator for numerical optimization problems. In: Modeling, Simulation, and Optimization. Cham: Springer; 2018. p. 57–69.CrossRef
35.
Zurück zum Zitat Ghanem WAHM, Jantan A. Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems. Neural Comput & Applic. 2018;30(1):163–81.CrossRef Ghanem WAHM, Jantan A. Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems. Neural Comput & Applic. 2018;30(1):163–81.CrossRef
36.
Zurück zum Zitat Wang G-G, Gandomi AH, Alavi AH, Hao G-S. Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput & Applic. 2014;25(2):297–308.CrossRef Wang G-G, Gandomi AH, Alavi AH, Hao G-S. Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput & Applic. 2014;25(2):297–308.CrossRef
37.
Zurück zum Zitat Mirjalili, Seyedali, and Siti Zaiton Mohd Hashim. A new hybrid PSOGSA algorithm for function optimization. In Computer and information application (ICCIA), 2010 international conference on, pp. 374–377. IEEE, 2010. Mirjalili, Seyedali, and Siti Zaiton Mohd Hashim. A new hybrid PSOGSA algorithm for function optimization. In Computer and information application (ICCIA), 2010 international conference on, pp. 374–377. IEEE, 2010.
38.
Zurück zum Zitat Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.CrossRef Siddique N, Adeli H. Nature-inspired chemical reaction optimisation algorithms. Cogn Comput. 2017;9(4):411–22.CrossRef
39.
Zurück zum Zitat Wu T, Yao M, Yang J. Dolphin swarm extreme learning machine. Cogn Comput. 2017;9(2):275–84.CrossRef Wu T, Yao M, Yang J. Dolphin swarm extreme learning machine. Cogn Comput. 2017;9(2):275–84.CrossRef
40.
Zurück zum Zitat Karaboga, Dervis. An idea based on honey bee swarm for numerical optimization. Vol. 200. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005. Karaboga, Dervis. An idea based on honey bee swarm for numerical optimization. Vol. 200. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.
41.
Zurück zum Zitat Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput. 2008;8(1):687–97.CrossRef Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput. 2008;8(1):687–97.CrossRef
42.
Zurück zum Zitat Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic. 2016;27(4):1053–73.CrossRef Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic. 2016;27(4):1053–73.CrossRef
43.
Zurück zum Zitat Floudas, Christodoulos A. Deterministic global optimization: theory, methods and applications. Vol. 37. Springer Science & Business Media, 2013. Floudas, Christodoulos A. Deterministic global optimization: theory, methods and applications. Vol. 37. Springer Science & Business Media, 2013.
44.
Zurück zum Zitat Horst, Reiner, and Hoang Tuy. Global optimization: deterministic approaches. Springer Science & Business Media, 2013. Horst, Reiner, and Hoang Tuy. Global optimization: deterministic approaches. Springer Science & Business Media, 2013.
45.
Zurück zum Zitat Ojha VK, Abraham A, Snášel V. Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng Appl Artif Intell. 2017;60:97–116.CrossRef Ojha VK, Abraham A, Snášel V. Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng Appl Artif Intell. 2017;60:97–116.CrossRef
46.
Zurück zum Zitat Zhang N, Ding S, Shi Z. Denoising Laplacian multi-layer extreme learning machine. Neurocomputing. 2016;171:1066–74.CrossRef Zhang N, Ding S, Shi Z. Denoising Laplacian multi-layer extreme learning machine. Neurocomputing. 2016;171:1066–74.CrossRef
47.
Zurück zum Zitat Meng L, Ding S, Yu X. Research on denoising sparse autoencoder. Int J Mach Learn Cybern. 2017;8(5):1719–29.CrossRef Meng L, Ding S, Yu X. Research on denoising sparse autoencoder. Int J Mach Learn Cybern. 2017;8(5):1719–29.CrossRef
48.
Zurück zum Zitat Malakooti B, Zhou Y. Approximating polynomial functions by feedforward artificial neural networks: capacity analysis and design. Appl Math Comput. 1998;90(1):27–51. Malakooti B, Zhou Y. Approximating polynomial functions by feedforward artificial neural networks: capacity analysis and design. Appl Math Comput. 1998;90(1):27–51.
49.
Zurück zum Zitat Isa NAM, Mamat WMFW. Clustered-hybrid multilayer perceptron network for pattern recognition application. Appl Soft Comput. 2011;11(1):1457–66.CrossRef Isa NAM, Mamat WMFW. Clustered-hybrid multilayer perceptron network for pattern recognition application. Appl Soft Comput. 2011;11(1):1457–66.CrossRef
50.
Zurück zum Zitat Melin P, Sánchez D, Castillo O. Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf Sci. 2012;197:1–19.CrossRef Melin P, Sánchez D, Castillo O. Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf Sci. 2012;197:1–19.CrossRef
51.
Zurück zum Zitat Guo ZX, Wong WK, Li M. Sparsely connected neural network-based time series forecasting. Inf Sci. 2012;193:54–71.CrossRef Guo ZX, Wong WK, Li M. Sparsely connected neural network-based time series forecasting. Inf Sci. 2012;193:54–71.CrossRef
52.
Zurück zum Zitat Suganuma, Masanori, Mete Ozay, and Takayuki Okatani. Exploiting the potential of standard convolutional autoencoders for image restoration by evolutionary search. arXiv preprint arXiv:1803.003 70 (2018). Suganuma, Masanori, Mete Ozay, and Takayuki Okatani. Exploiting the potential of standard convolutional autoencoders for image restoration by evolutionary search. arXiv preprint arXiv:1803.003 70 (2018).
53.
Zurück zum Zitat Wang, Yunhe, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao.Towards evolutional compression arXiv preprint arXiv:1707.08005 (2017). Wang, Yunhe, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao.Towards evolutional compression arXiv preprint arXiv:1707.08005 (2017).
54.
Zurück zum Zitat Real, Esteban, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017). Real, Esteban, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017).
55.
Zurück zum Zitat Zhang J-R, Zhang J, Lok T-M, Lyu MR. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Appl Math Comput. 2007;185(2):1026–37. Zhang J-R, Zhang J, Lok T-M, Lyu MR. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training. Appl Math Comput. 2007;185(2):1026–37.
56.
Zurück zum Zitat Mirjalili S, Mirjalili SM, Lewis A. Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci. 2014;269:188–209.CrossRef Mirjalili S, Mirjalili SM, Lewis A. Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci. 2014;269:188–209.CrossRef
57.
Zurück zum Zitat Ampazis N, Perantonis SJ, Drivaliaris D. Improved Jacobian Eigen-analysis scheme for accelerating learning in feedforward neural networks. Cognitive Computation. 2015;7(1):86–102.CrossRef Ampazis N, Perantonis SJ, Drivaliaris D. Improved Jacobian Eigen-analysis scheme for accelerating learning in feedforward neural networks. Cognitive Computation. 2015;7(1):86–102.CrossRef
58.
Zurück zum Zitat Mirjalili S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell. 2015;43(1):150–61.CrossRef Mirjalili S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell. 2015;43(1):150–61.CrossRef
59.
Zurück zum Zitat Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput. 2010;217(7):3166–73. Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput. 2010;217(7):3166–73.
60.
Zurück zum Zitat Li Z, Wang W, Yan Y, Zheng L. PS–ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Syst Appl. 2015;42(22):8881–95.CrossRef Li Z, Wang W, Yan Y, Zheng L. PS–ABC: a hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Syst Appl. 2015;42(22):8881–95.CrossRef
61.
Zurück zum Zitat Yılmaz S, Küçüksille EU. A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput. 2015;28:259–75.CrossRef Yılmaz S, Küçüksille EU. A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput. 2015;28:259–75.CrossRef
62.
Zurück zum Zitat Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H. Chaotic krill herd algorithm. Inf Sci. 2014;274:17–34.CrossRef Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H. Chaotic krill herd algorithm. Inf Sci. 2014;274:17–34.CrossRef
63.
Zurück zum Zitat Dheeru D and Karra Taniskidou E., {UCI} Machine Learning Repository. 2017. Dheeru D and Karra Taniskidou E., {UCI} Machine Learning Repository. 2017.
Metadaten
Titel
A Cognitively Inspired Hybridization of Artificial Bee Colony and Dragonfly Algorithms for Training Multi-layer Perceptrons
Publikationsdatum
12.09.2018
Erschienen in
Cognitive Computation / Ausgabe 6/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9588-3

Weitere Artikel der Ausgabe 6/2018

Cognitive Computation 6/2018 Zur Ausgabe