The wireless body area networks (WBANs) is a practical application model of Internet of things. It can be used in many scenarios, especially for e-healthcare. The medical data of patients is collected by sensors and transmitted using wireless communication techniques. Different users can access the patient’s data with different privileges. Access control is a crucial problem in WBANs. In this paper, we design a new security mechanism named combined public-key scheme in the case of attribute-based (CP-ABES) to address the user access control in WBANs. Our scheme combines encryption and digital signatures. It uses ciphertext-policy attribute-based encryption to achieve data confidentially, access control, and ciphertext-policy attribute-based signature to realize the identity authentication. The access policy used in our scheme is threshold. Based on this feature, the length of ciphertext and signature of our scheme is constant. Our scheme provides confidentiality, unforgeability, signer privacy and collusion resistance. We prove the efficiency of our scheme theoretically and analyze the security level and energy consumption of our scheme.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Weber, R. H. (2010). Internet of Things—New security and privacy challenges.
Computer Law & Security Review,26(1), 23–30. doi:
10.1016/j.clsr.2009.11.008.
2.
Tian, Y., Peng, Y. B., Peng, X. G., & Li, H. B. (2014). An attribute-based encryption scheme with revocation for fine-grained access control in wireless body area networks.
International Journal of Distributed Sensor Networks. doi:
10.1155/2014/259798.
3.
Li, M., Lou, W., & Ren, K. (2010). Data security and privacy in wireless body area networks.
IEEE Wireless Communications,17(1), 51–58. doi:
10.1109/MWC.2010.5416350.
4.
Sahai A., & Waters, B. (2005). Fuzzy identity-based encryption. In
Advances in Cryptology–
EUROCRYPT (vol. 3494, pp. 457–473). Berlin: Springer. doi:
10.1007/11426639_27
5.
Waters, B., Bethencourt, J., & Sahai, A. (2007). Ciphertext-policy attribute-based encryption. In
Proceedings of the IEEE Symposium on Security and Privacy (pp. 321–334). doi:
10.1109/SP.2007.11
6.
Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006). Attribute-based encryption for fine-grained access control of encrypted data. In
Proceedings of the 13th ACM conference on Computer and communications security (CCS ‘06) (pp. 89–98). doi:
10.1145/1180405.1180418
7.
Maji, H. K., Prabhakaran, M., & Rosulek, M. (2011). Attribute-based signatures. In
Topics in Cryptology—
CT-
RSA (vol. 6558, pp. 376–392). Berlin: Springer. doi:
10.1007/978-3-642-19074-2_24
8.
Lewko, A., Okamoto, T., Sahai, A., Takashima, K., & Waters, B. (2010). Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In
Advances in Cryptology–
EUROCRYPT (vol. 6110, pp. 62–91). Berlin: Springer. doi:
10.1007/978-3-642-13190-5_4
9.
Lewko, A., & Waters, B. (2011). Decentralizing attribute-based encryption. In
Advances in Cryptology–
EUROCRYPT (vol. 6632, pp. 568–588). Berlin: Springer. doi:
10.1007/978-3-642-20465-4_31
10.
Cheung, L., & Newport, C. (2007). Provably secure ciphertext policy ABE. In
Proceedings of the 14th ACM conference on Computer and communications security (CCS ‘07) (pp. 456–465). doi:
10.1145/1315245.1315302
11.
Nishide, T., Yoneyama, K., & Ohta, K. (2008). Attribute-based encryption with partially hidden encryptor-specified access structure.
Applied Cryptography and Network Security,5037, 111–129. doi:
10.1007/978-3-540-68914-0_7.
MATH
12.
Shahandashti, S. F., & Naini, R. S. (2009). Threshold attribute-based signatures and their application to anonymous credentials systems. In
Progress in Cryptology–
AFRICACRYPT (vol. 5580, pp. 198–216). Berlin: Springer. doi:
10.1007/978-3-642-02384-2_13
13.
Okamoto, T., & Takashima, K. (2014). Efficient attribute-based signatures for non-montone predicates in the standard model.
IEEE Transaction on Cloud Computing,2(4), 409–421. doi:
10.1109/TCC.2014.2353053.
14.
Emura, K., Miyaji, A., Nomura, A., Omote, K., & Soshi, M. (2009). A ciphertext-policy attribute encryption scheme with constant ciphertext length.
Information Security Practice and Experience,5451, 13–23. doi:
10.1007/978-3-642-00843-6_2.
MATH
15.
Attrapadung, N., Hettanz, J., Laguillaumie, F., Libert, B., Panafieu, E., & Rafols, C. (2012). Attribute-based encryption schemes with constant-size ciphertexts.
Theoretical Computer Science,422(9), 15–38. doi:
10.1016/j.tcs.2011.12.004.
MathSciNetMATH
16.
Wenqiang, W., & Shaozhen, C. (2010). Attribute-based ring signature scheme with constant-size signature.
IET Information Security,4(2), 104–110. doi:
10.1049/iet-ifs.2009.0189.
17.
Haber, S., & Pinkas, B. (2001). Securely combining public-key cryptosystems, In
Proceedings of the 8th ACM conference on Computer and Communications Security (CCS ‘01) (pp. 215–224) doi:
10.1145/501983.502013
18.
Vasco, M. I. G., Hess, F., & Steinwandt, R. (2008). Combined (identity-based) public key schemes.
Journal of IACR Cryptology ePrint Archive.
19.
Ge, A. J., Zhang, R., Chen, C., Ma, C. G., & Zhang, Z. F. (2012). Threshold ciphertext policy attribute-based encryption with constant size ciphertexts.
Information Security and Privacy,7372, 336–349. doi:
10.1007/978-3-642-31448-3_25.
MATH
20.
Ge, A. J., Ma, C. G., & Zhang, Z. F. (2012). Attribute-based signature scheme with constant size signature in the standard model.
IET Information Security,6(2), 47–54. doi:
10.1049/iet-ifs.2011.0094.
21.
Cao, H. S., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: a survey and outlook.
IEEE Communications Magazine,47(12), 84–93. doi:
10.1109/MCOM.2009.5350373.
22.
Wang, H. D., & Li, Q. (2006). Distributed user access control in sensor networks.
Distributed Computing in Sensor Systems,4026, 305–320. doi:
10.1007/11776178_19.
23.
Wang, H. D., & Li, Q. (2012). Achieving distributed user access control in sensor networks.
Ad Hoc Networks,10(3), 273–283. doi:
10.1016/j.adhoc.2011.01.011.
24.
Liu, D. G. (2007). Efficient and distributed access control for sensor networks.
Distributed Computing in Sensor Systems,4549, 21–35. doi:
10.1007/978-3-540-73090-3_2.
25.
Zhang, W. S., Song, H., Zhu, S. C., & Cao, G. H. (2005). Least privilege and privilege deprivation: towards tolerating mobile sink compromises in wireless sensor networks. In
Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (MobiHoc’05) (pp. 378–389). doi:
10.1145/1062689.1062737.
26.
Liu, W., Zhang, Y. C., Lou, W. J., & Fang, Y. G. (2006). Location-based compromise-tolerant security mechanisms for wireless sensor networks.
IEEE Journalon Selected Areasin Communications,24(2), 247–260. doi:
10.1109/JSAC.2005.861382.
27.
Kim, I. T., & Hwang, S. O. ( 2011). An efficient identity-based broadcast signcryption scheme for wireless sensor networks.
IEEE Wireless and Pervasive Computing (ISWPC) (pp. 1–6). doi:
10.1109/ISWPC.2011.5751323
28.
Yu, S. C., Ren, K., & Lou, W. J. (2011). FDAC: Toward fine-grained distributed data accesscontrol in wireless sensor networks.
IEEE Transactions on Parallel and Distributed Systems,22(4), 673–686. doi:
10.1109/TPDS.2010.130.
29.
Hu, C. Q., Zhang, N., Li, H. J., Cheng, X. Z., & Liao, X. F. (2013). Body area network security: a fuzzy attribute-based signcryption scheme.
IEEE Journalon Selected Areasin Communications,31(9), 37–46. doi:
10.1109/JSAC.2013.SUP.0513004.
30.
Wang, C. J., Xu, X. L., Li, Y., & Shi, D. Y. (2015). Integrating ciphertext-policy attribute-based encryption with identity-based ring signature to enhance security and privacy in wireless body area networks.
Information Security and Cryptology,8957, 424–442. doi:
10.1007/978-3-319-16745-9_23.
MathSciNetMATH
31.
Chatterjee, S., Das, A. K., & Sing, J. K. (2014). A novel and efficient user access control scheme for wireless body area sensor networks.
Computer and Information Sciences,26(2), 181–201. doi:
10.1016/j.jksuci.2013.10.007.
32.
Chen, C., Chen, J., Lim, H. W., Zhang, Z. F., & Feng, D. G. (2012). Combined public-key schemes: The case of ABE and ABS.
Provable Security,7496, 53–69. doi:
10.1007/978-3-642-33272-2_5.
MathSciNetMATH
33.
Li, J., Au, M. H., Susio, W., Xie, D. Q., & Ren, K. (2010). Attribute-based signature and its applications. In
Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security(ASIACCS ‘10) (pp. 60–69). doi:
10.1145/1755688.1755697
34.
Shim, K.-A., Lee, Y.-R., & Park, C.-M. (2013). EIBAS: An efficient identity-based broadcast authentication scheme in wireless sensor networks.
Ad Hoc Networks,11(1), 182–189. doi:
10.1016/j.adhoc.2012.04.015.
35.
Cao, X., Kou, W., Dang, L., & Zhao, B. (2008). IMBAS: Identity-based multiuser broadcast authentication in wireless sensor networks.
Computer Communications,31(4), 659–667. doi:
10.1016/j.comcom.2007.10.017.
36.
Li, F., Zheng, Z., & Jin, C. (2016). Secure and efficient data transmission in the Internet of Things.
Telecommunication Systems,62(1), 111–122. doi:
10.1007/s11235-015-0065-y.
37.
Ma, C., Xue, K., & Hong, P. (2014). Distributed access control with adaptive privacy preserving property for wireless sensor networks.
Security and Communication Networks,7(4), 759–773. doi:
10.1002/sec.777.
38.
Shim, K. A. (2014). S
2DRP: Secure implementations of distributed reprogramming protocol for wireless sensor networks.
Ad Hoc Networks,19, 1–8. doi:
10.1016/j.adhoc.2014.01.011.
Über diesen Artikel
Titel
A combined public-key scheme in the case of attribute-based for wireless body area networks
Autoren:
Jiaojiao Hong Bo Liu Qianyuan Sun Fagen Li
Publikationsdatum
22.10.2017
DOI
https://doi.org/10.1007/s11276-017-1597-8
Verlag
Springer US
Zeitschrift
Wireless Networks
The Journal of Mobile Communication, Computation and Information
Ausgabe 2/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Bedingt durch die Altersstruktur vieler Kabelverteilnetze mit der damit verbundenen verminderten Isolationsfestigkeit oder durch fortschreitenden Kabelausbau ist es immer häufiger erforderlich, anstelle der Resonanz-Sternpunktserdung alternative Konzepte für die Sternpunktsbehandlung umzusetzen. Die damit verbundenen Fehlerortungskonzepte bzw. die Erhöhung der Restströme im Erdschlussfall führen jedoch aufgrund der hohen Fehlerströme zu neuen Anforderungen an die Erdungs- und Fehlerstromrückleitungs-Systeme. Lesen Sie hier über die Auswirkung von leitfähigen Strukturen auf die Stromaufteilung sowie die Potentialverhältnisse in urbanen Kabelnetzen bei stromstarken Erdschlüssen. Jetzt gratis downloaden!