Skip to main content

2025 | OriginalPaper | Buchkapitel

A Comparative Analysis for Prediction of Liver Cirrhosis Using Deep Learning Methods

verfasst von : Joshika Choudhury, Rijhi Dey

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Liver cirrhosis is a prevalent and potentially life-threatening condition characterized by the irreversible scarring of the liver tissue. In this study, we propose a comparative approach employing three deep learning models, Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP) Classifier, and Logistic Regression (LR) to enhance the diagnostic accuracy of liver cirrhosis. The primary objective of this paper was to develop and evaluate an automated prediction system. This system utilizes a comprehensive database of cirrhosis data, with a particular focus on improving the detection of liver cirrhosis. The goal of this study is to examine how well three distinct supervised deep learning models performed when it comes to liver cirrhosis detection utilizing actual inter-patient records. Four key measures were used in the study to assess the models’ performances: F1-score, accuracy, precision, and recall. Finally, comparative analysis has been made to showcase the performances indices of this three deep learning models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frayn KN (2009) Metabolic regulation: a human perspective. Wiley Frayn KN (2009) Metabolic regulation: a human perspective. Wiley
2.
Zurück zum Zitat Berzigotti A, Saran U, Dufour JF (2016) Physical activity and liver diseases. Hepatology 63(3):1026–1040CrossRef Berzigotti A, Saran U, Dufour JF (2016) Physical activity and liver diseases. Hepatology 63(3):1026–1040CrossRef
3.
Zurück zum Zitat Khan S, Saxena R (2021) Regression of hepatic fibrosis and evolution of cirrhosis: a concise review. Adv Anat Pathol 28(6):408CrossRef Khan S, Saxena R (2021) Regression of hepatic fibrosis and evolution of cirrhosis: a concise review. Adv Anat Pathol 28(6):408CrossRef
4.
Zurück zum Zitat Roehlen N, Crouchet E, Baumert TF (2020) Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells 9(4):875CrossRef Roehlen N, Crouchet E, Baumert TF (2020) Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells 9(4):875CrossRef
5.
Zurück zum Zitat Fenwa OD, Ajala FA, Aku AM (2015) Performance evaluation of support vector machine and artificial neural network in the classification of liver cirhosis and hemachromatosis. In: International conference on computer vision and image analysis applications. IEEE, pp 1–6 Fenwa OD, Ajala FA, Aku AM (2015) Performance evaluation of support vector machine and artificial neural network in the classification of liver cirhosis and hemachromatosis. In: International conference on computer vision and image analysis applications. IEEE, pp 1–6
6.
Zurück zum Zitat Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, Yun J, Choi JY, Lee Y, Kang BK, Kim JH (2018) Development and validation of a deep learning system for staging liver fibrosis by using contrast agent–enhanced CT images in the liver. Radiology 289(3):688–697 Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, Yun J, Choi JY, Lee Y, Kang BK, Kim JH (2018) Development and validation of a deep learning system for staging liver fibrosis by using contrast agent–enhanced CT images in the liver. Radiology 289(3):688–697
7.
Zurück zum Zitat Tarao K, Nozaki A, Ikeda T, Sato A, Komatsu H, Komatsu T, Taguri M, Tanaka K (2019) Real impact of liver cirrhosis on the development of hepatocellular carcinoma in various liver diseases—meta-analytic assessment. Cancer Med 8(3):1054–1065CrossRef Tarao K, Nozaki A, Ikeda T, Sato A, Komatsu H, Komatsu T, Taguri M, Tanaka K (2019) Real impact of liver cirrhosis on the development of hepatocellular carcinoma in various liver diseases—meta-analytic assessment. Cancer Med 8(3):1054–1065CrossRef
8.
Zurück zum Zitat Singh V, Gourisaria MK, Das H (2021) Performance analysis of machine learning algorithms for prediction of liver disease. In: 2021 IEEE 4th international conference on computing, power and communication technologies (GUCON). IEEE, pp 1–7 Singh V, Gourisaria MK, Das H (2021) Performance analysis of machine learning algorithms for prediction of liver disease. In: 2021 IEEE 4th international conference on computing, power and communication technologies (GUCON). IEEE, pp 1–7
9.
Zurück zum Zitat Perugachi-Diaz Y, Tomczak JM, Bhulai S (2021) Deep learning for white cabbage seedling prediction. Comput Electron Agric 184:106059CrossRef Perugachi-Diaz Y, Tomczak JM, Bhulai S (2021) Deep learning for white cabbage seedling prediction. Comput Electron Agric 184:106059CrossRef
10.
Zurück zum Zitat Guo A, Mazumder NR, Ladner DP, Foraker RE (2021) Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning. PLoS ONE 16(8):e0256428CrossRef Guo A, Mazumder NR, Ladner DP, Foraker RE (2021) Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning. PLoS ONE 16(8):e0256428CrossRef
11.
Zurück zum Zitat Sorino P, Caruso MG, Misciagna G, Bonfiglio C, Campanella A, Mirizzi A, Franco I, Bianco A, Buongiorno C, Liuzzi R, Cisternino AM (2020) Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver disease: a meta learner study. PLoS ONE 15(10):e0240867CrossRef Sorino P, Caruso MG, Misciagna G, Bonfiglio C, Campanella A, Mirizzi A, Franco I, Bianco A, Buongiorno C, Liuzzi R, Cisternino AM (2020) Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver disease: a meta learner study. PLoS ONE 15(10):e0240867CrossRef
12.
Zurück zum Zitat Li N, Zhang J, Wang S, Jiang Y, Ma J, Ma J, Dong L, Gong G (2019) Machine learning assessment for severity of liver fibrosis for chronic HBV based on physical layer with serum markers. IEEE Access 7:124351–124365CrossRef Li N, Zhang J, Wang S, Jiang Y, Ma J, Ma J, Dong L, Gong G (2019) Machine learning assessment for severity of liver fibrosis for chronic HBV based on physical layer with serum markers. IEEE Access 7:124351–124365CrossRef
13.
Zurück zum Zitat Kanwal F, Taylor TJ, Kramer JR, Cao Y, Smith D, Gifford AL, El-Serag HB, Naik AD, Asch SM (2020) Development, validation, and evaluation of a simple machine learning model to predict cirrhosis mortality. JAMA Netw Open 3(11):e2023780–e2023780CrossRef Kanwal F, Taylor TJ, Kramer JR, Cao Y, Smith D, Gifford AL, El-Serag HB, Naik AD, Asch SM (2020) Development, validation, and evaluation of a simple machine learning model to predict cirrhosis mortality. JAMA Netw Open 3(11):e2023780–e2023780CrossRef
14.
Zurück zum Zitat Singal AG, Mukherjee A, Elmunzer JB, Higgins PD, Lok AS, Zhu J, Marrero JA, Waljee AK (2013) Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Official J Am Coll Gastroenterol| ACG, 108(11):1723–1730 Singal AG, Mukherjee A, Elmunzer JB, Higgins PD, Lok AS, Zhu J, Marrero JA, Waljee AK (2013) Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma. Official J Am Coll Gastroenterol| ACG, 108(11):1723–1730
Metadaten
Titel
A Comparative Analysis for Prediction of Liver Cirrhosis Using Deep Learning Methods
verfasst von
Joshika Choudhury
Rijhi Dey
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_30