Skip to main content
Erschienen in: Environmental Earth Sciences 9/2024

01.05.2024 | Original Article

A comparative analysis of ensemble learning algorithms with hyperparameter optimization for soil liquefaction prediction

verfasst von: Alparslan Serhat Demir, Talas Fikret Kurnaz, Abdullah Hulusi Kökçam, Caner Erden, Uğur Dağdeviren

Erschienen in: Environmental Earth Sciences | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate prediction of soil liquefaction potential is crucial for evaluating the stability of structures in earthquake regions. This study focuses on predicting soil liquefaction using a dataset that included historical liquefaction cases from the 1999 Turkey and Taiwan earthquakes. The dataset was divided into three subsets: Dataset A (fine-grained), Dataset B (coarse-grained), and Dataset C (all samples). Through the analysis of these subsets, the study aims to assess the performance of machine learning algorithms in predicting soil liquefaction potential. This study applied ensemble machine learning algorithms, including extreme gradient boosting, adaptive boosting, extra trees, bagging classifiers, light gradient boosting machine, and random forest, to accurately classify the liquefaction potential of fine-grained and coarse-grained soils. A comparison between the genetic algorithm approach for hyperparameter optimization and traditional methods such as grid search and random search revealed that genetic algorithms outperformed both in terms of average test and train accuracy. Specifically, the light gradient boosting machine yielded the best predictions of soil liquefaction potential among the algorithms tested. The study demonstrated that Dataset B achieved the highest learning performance with accuracy of 0.92 on both the test and training sets. Furthermore, Dataset A showed a training accuracy of 0.88 and a test accuracy of 0.84, while Dataset C exhibited a training accuracy of 0.87 and a test accuracy of 0.87. Future studies could build on these findings by evaluating the performance of genetic algorithms on a wider range of machine learning algorithms and datasets, thus advancing our understanding of soil liquefaction prediction and its implications for geotechnical engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdu-Aljabar RDA, Awad OA (2022) Improving lung cancer relapse prediction using the developed Optuna_XGB classification model. Int J Intellig Eng Syst Abdu-Aljabar RDA, Awad OA (2022) Improving lung cancer relapse prediction using the developed Optuna_XGB classification model. Int J Intellig Eng Syst
Zurück zum Zitat Almadani M, Kheimi M (2023) Stacking artificial intelligence models for predicting water quality parameters in rivers. J Ecol Eng 24:152–164CrossRef Almadani M, Kheimi M (2023) Stacking artificial intelligence models for predicting water quality parameters in rivers. J Ecol Eng 24:152–164CrossRef
Zurück zum Zitat Amini A, Dolatshahi M, Kerachian R (2023) Effects of automatic hyperparameter tuning on the performance of multi-variate deep learning-based rainfall nowcasting. Water Resour Res e2022WR032789 Amini A, Dolatshahi M, Kerachian R (2023) Effects of automatic hyperparameter tuning on the performance of multi-variate deep learning-based rainfall nowcasting. Water Resour Res e2022WR032789
Zurück zum Zitat Andrews DC, Martin GR (2000) Criteria for liquefaction of silty soils. In: Proc., 12th World Conf. on Earthquake Engineering pp. 1-8 Andrews DC, Martin GR (2000) Criteria for liquefaction of silty soils. In: Proc., 12th World Conf. on Earthquake Engineering pp. 1-8
Zurück zum Zitat Baecher GB, Christian JT (2005) Reliability and statistics in geotechnical engineering. John Wiley & Sons Baecher GB, Christian JT (2005) Reliability and statistics in geotechnical engineering. John Wiley & Sons
Zurück zum Zitat Bol E, Önalp A, Arel E, Sert S, Özocak A (2010) Liquefaction of silts: the Adapazari criteria. Bull Earthq Eng 8:859–873CrossRef Bol E, Önalp A, Arel E, Sert S, Özocak A (2010) Liquefaction of silts: the Adapazari criteria. Bull Earthq Eng 8:859–873CrossRef
Zurück zum Zitat Boulanger RW, Idriss IM (2014) CPT and SPT based liquefaction triggering procedures (No. UCD/CGM-14/01). Center for Geotechnical Modeling, University of California at Davis Boulanger RW, Idriss IM (2014) CPT and SPT based liquefaction triggering procedures (No. UCD/CGM-14/01). Center for Geotechnical Modeling, University of California at Davis
Zurück zum Zitat Das BM (1993) Principles of soil dynamics. PWS-KENT Publishing Company, Boston, USA Das BM (1993) Principles of soil dynamics. PWS-KENT Publishing Company, Boston, USA
Zurück zum Zitat Dietterich TG (2000) Ensemble methods in machine learning, In: Proceedings of the First International Workshop on Multiple Classifier Systems, MCS ‘00. Springer-Verlag, Berlin, Heidelberg, pp. 1–15 Dietterich TG (2000) Ensemble methods in machine learning, In: Proceedings of the First International Workshop on Multiple Classifier Systems, MCS ‘00. Springer-Verlag, Berlin, Heidelberg, pp. 1–15
Zurück zum Zitat Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17:641–658. https://doi.org/10.1007/s10346-019-01286-5CrossRef Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17:641–658. https://​doi.​org/​10.​1007/​s10346-019-01286-5CrossRef
Zurück zum Zitat Erzin Y, Tuskan Y (2019) The use of neural networks for predicting the factor of safety of soil against liquefaction. Scientia Iranica 26:2615–2623 Erzin Y, Tuskan Y (2019) The use of neural networks for predicting the factor of safety of soil against liquefaction. Scientia Iranica 26:2615–2623
Zurück zum Zitat Evans MD, Seed HB (1987) Undrained cyclic triaxial testing of gravels: the effect of membrane compliance. University of California, College of Engineering Evans MD, Seed HB (1987) Undrained cyclic triaxial testing of gravels: the effect of membrane compliance. University of California, College of Engineering
Zurück zum Zitat Gandomi AH, Fridline MM, Roke DA (2013) Decision tree approach for soil liquefaction assessment. Scient World J Gandomi AH, Fridline MM, Roke DA (2013) Decision tree approach for soil liquefaction assessment. Scient World J
Zurück zum Zitat Ghani S, Kumari S (2022b) Reliability analysis for liquefaction risk assessment for the City of Patna, India using hybrid computational modeling. J Geol Soc India 98:1395–1406CrossRef Ghani S, Kumari S (2022b) Reliability analysis for liquefaction risk assessment for the City of Patna, India using hybrid computational modeling. J Geol Soc India 98:1395–1406CrossRef
Zurück zum Zitat Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press
Zurück zum Zitat Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes (Monograph No. MNO-12). Earthquake Engineering Research Institute, Oakland, CA Idriss IM, Boulanger RW (2008) Soil liquefaction during earthquakes (Monograph No. MNO-12). Earthquake Engineering Research Institute, Oakland, CA
Zurück zum Zitat Idriss IM, Boulanger RW (2010) SPT-based liquefaction triggering procedures (No. UCD/CGM-10/02). Center for Geotechnical Modeling, University of California at Davis. Idriss IM, Boulanger RW (2010) SPT-based liquefaction triggering procedures (No. UCD/CGM-10/02). Center for Geotechnical Modeling, University of California at Davis.
Zurück zum Zitat Ishihara K (1984) Post-earthquake failure of a tailings dam due to liquefaction of the pond deposits. Proceeding of International Conference on Case Histories in Geotechnical Engineering. University of Missouri, St. Louis, pp 1129–1143 Ishihara K (1984) Post-earthquake failure of a tailings dam due to liquefaction of the pond deposits. Proceeding of International Conference on Case Histories in Geotechnical Engineering. University of Missouri, St. Louis, pp 1129–1143
Zurück zum Zitat Ishihara K (1996) Soil Behaviour in Earthquake Geotechnics, 1st edn. Clarendon Press, OxfordCrossRef Ishihara K (1996) Soil Behaviour in Earthquake Geotechnics, 1st edn. Clarendon Press, OxfordCrossRef
Zurück zum Zitat Ishihara K (1985) Stability of natural deposits during earthquakes, in: Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, A. Balkema. Rotterdam, The Netherlands, pp. 321–376 Ishihara K (1985) Stability of natural deposits during earthquakes, in: Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, A. Balkema. Rotterdam, The Netherlands, pp. 321–376
Zurück zum Zitat Jha SK, Suzuki K (2009) Reliability analysis of soil liquefaction based on standard penetration test. Comput Geotech 36:589–596CrossRef Jha SK, Suzuki K (2009) Reliability analysis of soil liquefaction based on standard penetration test. Comput Geotech 36:589–596CrossRef
Zurück zum Zitat Johari A, Javadi AA, Makiabadi MH, Khodaparast AR (2012) Reliability assessment of liquefaction potential using the jointly distributed random variables method. Soil Dyn Earthq Eng 38:81–87CrossRef Johari A, Javadi AA, Makiabadi MH, Khodaparast AR (2012) Reliability assessment of liquefaction potential using the jointly distributed random variables method. Soil Dyn Earthq Eng 38:81–87CrossRef
Zurück zum Zitat Juang C, Fang S, Tang W, Khor E, Kung GT-C, Zhang J (2009) Evaluating model uncertainty of an SPT-based simplified method for reliability analysis for probability of liquefaction. Soils Found 49:135–152CrossRef Juang C, Fang S, Tang W, Khor E, Kung GT-C, Zhang J (2009) Evaluating model uncertainty of an SPT-based simplified method for reliability analysis for probability of liquefaction. Soils Found 49:135–152CrossRef
Zurück zum Zitat Kayadelen C (2011) Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Syst Appl 38:4080–4087CrossRef Kayadelen C (2011) Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Syst Appl 38:4080–4087CrossRef
Zurück zum Zitat Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30:3146–3154 Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30:3146–3154
Zurück zum Zitat Kramer SL (1996) Geotechnical earthquake engineering. Prentice-Hall, Inc Kramer SL (1996) Geotechnical earthquake engineering. Prentice-Hall, Inc
Zurück zum Zitat Kwak BM, Lee TW (1987) Sensitivity analysis for reliability-based optimization using an AFOSM method. Comput Struct 27:399–406CrossRef Kwak BM, Lee TW (1987) Sensitivity analysis for reliability-based optimization using an AFOSM method. Comput Struct 27:399–406CrossRef
Zurück zum Zitat Law KT, Wang J (1994) Siting in earthquake zones. A.A. Balkema/Rotterdam/Brookfield Law KT, Wang J (1994) Siting in earthquake zones. A.A. Balkema/Rotterdam/Brookfield
Zurück zum Zitat Li Y, Rahardjo H, Satyanaga A, Rangarajan S, Lee DT-T (2022) Soil database development with the application of machine learning methods in soil properties prediction. Eng Geol 306:106769CrossRef Li Y, Rahardjo H, Satyanaga A, Rangarajan S, Lee DT-T (2022) Soil database development with the application of machine learning methods in soil properties prediction. Eng Geol 306:106769CrossRef
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
Zurück zum Zitat Pei X, Mei F, Gu J, Chen Z (2022) Research on real-time state identification model of electricity-heat system considering unbalanced data, In: 2022 IEEE 5th International Conference on Electronics Technology (ICET). Presented at the 2022 IEEE 5th International Conference on Electronics Technology (ICET), pp. 501–505. https://doi.org/10.1109/ICET55676.2022.9824069 Pei X, Mei F, Gu J, Chen Z (2022) Research on real-time state identification model of electricity-heat system considering unbalanced data, In: 2022 IEEE 5th International Conference on Electronics Technology (ICET). Presented at the 2022 IEEE 5th International Conference on Electronics Technology (ICET), pp. 501–505. https://​doi.​org/​10.​1109/​ICET55676.​2022.​9824069
Zurück zum Zitat Sari SA, Maki WFA (2023) Masked Face Images Based Gender Classification using Hybrid Bat Algorithm Optimized Bagging, In: 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Presented at the 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 091–096. https://doi.org/10.1109/ICAIIC57133.2023.10067008 Sari SA, Maki WFA (2023) Masked Face Images Based Gender Classification using Hybrid Bat Algorithm Optimized Bagging, In: 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Presented at the 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 091–096. https://​doi.​org/​10.​1109/​ICAIIC57133.​2023.​10067008
Zurück zum Zitat Seed RB, Cetin KO, Moss RE, Kammerer AM, Wu J, Pestana JM, Riemer MF, Sancio RB, Bray JD, Kayen RE (2003) Recent advances in soil liquefaction engineering: a unified and consistent framework, In: Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA Seed RB, Cetin KO, Moss RE, Kammerer AM, Wu J, Pestana JM, Riemer MF, Sancio RB, Bray JD, Kayen RE (2003) Recent advances in soil liquefaction engineering: a unified and consistent framework, In: Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar: Long Beach, CA
Zurück zum Zitat Yegian MK, Ghahraman VG, Harutiunyan RN (1994) Liquefaction and embankment failure case histories, 1988 Armenia earthquake. J Geotechn Eng 120:581–596CrossRef Yegian MK, Ghahraman VG, Harutiunyan RN (1994) Liquefaction and embankment failure case histories, 1988 Armenia earthquake. J Geotechn Eng 120:581–596CrossRef
Zurück zum Zitat Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotechn Geoenviron Eng 127:817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)CrossRef Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotechn Geoenviron Eng 127:817–833. https://​doi.​org/​10.​1061/​(ASCE)1090-0241(2001)127:​10(817)CrossRef
Zurück zum Zitat Youd TL, Idriss IM (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotechn Geoenviron Eng 127:297–313CrossRef Youd TL, Idriss IM (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotechn Geoenviron Eng 127:297–313CrossRef
Metadaten
Titel
A comparative analysis of ensemble learning algorithms with hyperparameter optimization for soil liquefaction prediction
verfasst von
Alparslan Serhat Demir
Talas Fikret Kurnaz
Abdullah Hulusi Kökçam
Caner Erden
Uğur Dağdeviren
Publikationsdatum
01.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 9/2024
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-024-11600-7

Weitere Artikel der Ausgabe 9/2024

Environmental Earth Sciences 9/2024 Zur Ausgabe