Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Health and Technology 3/2021

19.04.2021 | Original Paper

A comparative study and analysis of LSTM deep neural networks for heartbeats classification

verfasst von: Srinidhi Hiriyannaiah, Siddesh G M, Kiran M H M, K G Srinivasa

Erschienen in: Health and Technology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Heart diseases and their diagnosis has become a predominant topic in Healthcare systems as the heart is one of the pivotal parts of the human body. Electrocardiogram (ECG) signal-based diagnosis and classification have been experimented with various computational techniques which have demonstrated early detection and treatment of heart disease. Deep learning (DL) is the current interest of different Healthcare applications that includes the heartbeat classification based on ECG signals. There are various studies conducted with different DL models, such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU) for the heartbeat classification using MIT-BIH arrhythmia dataset. This paper aims to provide a comprehensive analysis of Long-Short Term Memory (LSTM) based DL models with multiple performance metrics on the MIT-BIH arrhythmia dataset for the heartbeat classification. The different variants of the LSTM DL model are proposed for the purpose of the classification. Among the variants, the bi-directional LSTM DL model shows high accuracy in the classification of Normal beats (97%), Premature ventricular contractions (PVC) beats (98%), Atrial Premature Complex (APC) beats (98%), and Paced Beats (PB) beats (99%). The comparative analysis of the bi-directional LSTM DL model with the existing works shows 95% sensitivity and 98% specificity in the classification of heartbeats. The results evidently show that the LSTM DL models are appropriate for the classification of heartbeats.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Jayaraman PP, Forkan ARM, Morshed A,Haghighi PD, Kang YB. Healthcare 4.0: A review of frontiers in digital health. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2020;10(2), e1350. Jayaraman PP, Forkan ARM, Morshed A,Haghighi PD, Kang YB. Healthcare 4.0: A review of frontiers in digital health. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2020;10(2), e1350.
2.
Zurück zum Zitat Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM. GBD-NHLBI-JACC Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. CrossRef Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM. GBD-NHLBI-JACC Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. CrossRef
3.
Zurück zum Zitat Akhtar U, Lee JW, Bilal HS, Ali T, Khan WA, Lee S. The Impact of Big Data In Healthcare Analytics. In 2020 International Conference on Information Networking (ICOIN) 2020 Jan 7 (pp. 61-63). IEEE. Akhtar U, Lee JW, Bilal HS, Ali T, Khan WA, Lee S. The Impact of Big Data In Healthcare Analytics. In 2020 International Conference on Information Networking (ICOIN) 2020 Jan 7 (pp. 61-63). IEEE.
4.
Zurück zum Zitat Murat F, Yildirim O, Talo M, Baloglu UB, Demir Y, Acharya UR. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Computers in biology and medicine. 2020 Apr 8:103726. Murat F, Yildirim O, Talo M, Baloglu UB, Demir Y, Acharya UR. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Computers in biology and medicine. 2020 Apr 8:103726.
5.
Zurück zum Zitat Yao Q, Wang R, Fan X, Liu J, Li Y. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network. Information Fusion. 2020;53:174–82. CrossRef Yao Q, Wang R, Fan X, Liu J, Li Y. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network. Information Fusion. 2020;53:174–82. CrossRef
6.
Zurück zum Zitat Shamshirband S, Fathi M, Dehzangi A, Chronopoulos AT, Alinejad-Rokny H. A Review on Deep Learning Approaches in Healthcare Systems: Taxonomies, Challenges, and Open Issues. J Biomed Inform. 2020 Nov 28:103627. Shamshirband S, Fathi M, Dehzangi A, Chronopoulos AT, Alinejad-Rokny H. A Review on Deep Learning Approaches in Healthcare Systems: Taxonomies, Challenges, and Open Issues. J Biomed Inform. 2020 Nov 28:103627.
7.
Zurück zum Zitat Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed. 2018;161:1–13. CrossRef Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed. 2018;161:1–13. CrossRef
8.
Zurück zum Zitat Saadatnejad S, Oveisi M, Hashemi M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J Biomed Health Inform. 2019;24(2):515–23. CrossRef Saadatnejad S, Oveisi M, Hashemi M. LSTM-based ECG classification for continuous monitoring on personal wearable devices. IEEE J Biomed Health Inform. 2019;24(2):515–23. CrossRef
9.
Zurück zum Zitat Sannino G, De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Futur Gener Comput Syst. 2018;86:446–55. CrossRef Sannino G, De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Futur Gener Comput Syst. 2018;86:446–55. CrossRef
10.
Zurück zum Zitat Hanbay K. Deep neural network based approach for ECG classification using hybrid differential features and active learning. IET Signal Proc. 2018;13(2):165–75. CrossRef Hanbay K. Deep neural network based approach for ECG classification using hybrid differential features and active learning. IET Signal Proc. 2018;13(2):165–75. CrossRef
11.
Zurück zum Zitat Oh SL, Ng EY, San Tan R, Acharya UR. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med. 2018;102:278–87. CrossRef Oh SL, Ng EY, San Tan R, Acharya UR. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med. 2018;102:278–87. CrossRef
12.
Zurück zum Zitat Singh S, Pandey SK, Pawar U, Janghel RR. Classification of ECG arrhythmia using recurrent neural networks. Procedia computer science. 2018;132:1290–7. CrossRef Singh S, Pandey SK, Pawar U, Janghel RR. Classification of ECG arrhythmia using recurrent neural networks. Procedia computer science. 2018;132:1290–7. CrossRef
13.
Zurück zum Zitat Kiranyaz S, Ince T, Gabbouj M. Personalized monitoring and advance warning system for cardiac arrhythmias. Sci Rep. 2017;7(1):1–8. CrossRef Kiranyaz S, Ince T, Gabbouj M. Personalized monitoring and advance warning system for cardiac arrhythmias. Sci Rep. 2017;7(1):1–8. CrossRef
14.
Zurück zum Zitat Shaker AM, Tantawi M, Shedeed HA, Tolba MF. Generalization of convolutional neural networks for ECG classification using generative adversarial networks. IEEE Access. 2020;8:35592–605. CrossRef Shaker AM, Tantawi M, Shedeed HA, Tolba MF. Generalization of convolutional neural networks for ECG classification using generative adversarial networks. IEEE Access. 2020;8:35592–605. CrossRef
15.
Zurück zum Zitat Tuncer T, Dogan S, Pławiak P, Acharya UR. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl-Based Syst. 2019;186:104923. CrossRef Tuncer T, Dogan S, Pławiak P, Acharya UR. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowl-Based Syst. 2019;186:104923. CrossRef
16.
Zurück zum Zitat Huda N, Khan S, Abid R, Shuvo SB, Labib MM, Hasan T. A Low-cost, Low-energy Wearable ECG System with Cloud-Based Arrhythmia Detection. In 2020 IEEE Region 10 Symposium (TENSYMP) 2020 Jun 5 (pp. 1840-1843). IEEE. Huda N, Khan S, Abid R, Shuvo SB, Labib MM, Hasan T. A Low-cost, Low-energy Wearable ECG System with Cloud-Based Arrhythmia Detection. In 2020 IEEE Region 10 Symposium (TENSYMP) 2020 Jun 5 (pp. 1840-1843). IEEE.
17.
Zurück zum Zitat Raj S, Ray KC. Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis. In2017 7th International Symposium on Embedded Computing and System Design (ISED) 2017 Dec 18 (pp. 1-5). IEEE. Raj S, Ray KC. Application of variational mode decomposition and ABC optimized DAG-SVM in arrhythmia analysis. In2017 7th International Symposium on Embedded Computing and System Design (ISED) 2017 Dec 18 (pp. 1-5). IEEE.
18.
Zurück zum Zitat Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput Methods Programs Biomed. 2019;176:121–33. CrossRef Yildirim O, Baloglu UB, Tan RS, Ciaccio EJ, Acharya UR. A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput Methods Programs Biomed. 2019;176:121–33. CrossRef
19.
Zurück zum Zitat Hou B, Yang J, Wang P, Yan R. LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans Instrum Meas. 2019;69(4):1232–40. CrossRef Hou B, Yang J, Wang P, Yan R. LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans Instrum Meas. 2019;69(4):1232–40. CrossRef
20.
Zurück zum Zitat Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X. 2020 Jun 20:100033. Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG arrhythmia classification. Expert Systems with Applications: X. 2020 Jun 20:100033.
21.
Zurück zum Zitat Liu M, Kim Y. Classification of heart diseases based on ECG signals using long short-term memory. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018 Jul 18 (pp. 2707-2710). IEEE. Liu M, Kim Y. Classification of heart diseases based on ECG signals using long short-term memory. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018 Jul 18 (pp. 2707-2710). IEEE.
22.
Zurück zum Zitat Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM.
23.
Zurück zum Zitat Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov PC, Mark R, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 2000;101(23):e215–20. Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov PC, Mark R, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 2000;101(23):e215–20.
26.
Zurück zum Zitat Parikh R, Mathai A, Parikh S, Sekhar GC, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45. CrossRef Parikh R, Mathai A, Parikh S, Sekhar GC, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45. CrossRef
Metadaten
Titel
A comparative study and analysis of LSTM deep neural networks for heartbeats classification
verfasst von
Srinidhi Hiriyannaiah
Siddesh G M
Kiran M H M
K G Srinivasa
Publikationsdatum
19.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Health and Technology / Ausgabe 3/2021
Print ISSN: 2190-7188
Elektronische ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-021-00552-8

Weitere Artikel der Ausgabe 3/2021

Health and Technology 3/2021 Zur Ausgabe

Premium Partner