Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Methodologies and Application | Ausgabe 6/2015

Soft Computing 6/2015

A comparative study of evolving fuzzy grammar and machine learning techniques for text categorization

Zeitschrift:
Soft Computing > Ausgabe 6/2015
Autoren:
Nurfadhlina Mohd Sharef, Trevor Martin, Khairul Azhar Kasmiran, Aida Mustapha, Md. Nasir Sulaiman, Masrah Azrifah Azmi-Murad
Wichtige Hinweise
Communicated by V. Loia.

Abstract

Several methods have been studied in text categorization and mostly are inspired by the statistical distribution features in the texts, such as the implementation of Machine Learning (ML) methods. However, there is no work available that investigates the performance of ML-based methods against the text expression-based method, especially for incident and medical case categorization. Meanwhile, these two domains are becoming ever more popular, due to a growing interest of automation in security intelligence and health services. This paper presents a text expression-based method called Evolving Fuzzy Grammar (EFG) and evaluates its performance against the conventional ML methods of Naïve Bayes, support vector machine, \(k\)-nearest neighbor, adaptive booting, and decision tree. The incident dataset used is a real dataset that was taken from the World Incidents Tracking System, while ImageCLEF 2009 was used as the source for radiology case reports. The results suggested variations of strength and weakness of each method in both categorization tasks, where a standard evaluation technique (i.e., recall, precision, and \(F\)-measure) was used. In both domains, the SMO and IBk methods were the best, while AdaBoost was the worst. It was also observed that the medical dataset was easier to categorize than the incident. Although EFG was ranked second lowest, it obtained the highest precision score in the bombing categorization, the highest score in armed attack recall, and was averagely ranked in the top three for the medical case categorization. It was also noted that the text expression-based method used in EFG was the most verbose and expressive, when compared to the ML methods. This indicates that EFG is a viable method in text categorization and may serve as an alternative approach to such a task.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2015

Soft Computing 6/2015 Zur Ausgabe

Premium Partner

    Bildnachweise