Skip to main content

05.12.2024 | Original Article

 A Comparative Study of Isogeometric Analysis for Topology Optimzation Based on the Level Set and the Phase Field Methods

verfasst von: Harsh Kumar, Sourav Rakshit

Erschienen in: Engineering with Computers

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a comparative study on the application of isogeometric analysis in boundary variation methods based topology optimization problems. Level set and phase field are two boundary variation methods gaining in popularity in topology optimization research community. Among different formulations on update methods, this work employs reaction-diffusion and Allen-Cahn update equations for level set and phase field methods respectively. The application of the isogeometric analysis method for these two update equations is new in the literature. The work explores the effect of different parameters, like basis function order, diffusion coefficient, and mesh size on three benchmark topology optimization problems. Our results indicate that quadratic NURBS-basis functions are adequate to solve compliance minimization problems, and increasing order leads to an increase of computation time without much change in accuracy. We found that whereas the phase field method allows a range of diffusion coefficients, the reaction-diffusion-based level set method was able to converge only for a narrow range of diffusion coefficients. Both methods faced convergence problems when the mesh size is increased for higher order basis functions. This study can provide guidance to new users interested in the application of isogeometric analysis in boundary variation methods for topology optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159CrossRef Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159CrossRef
2.
Zurück zum Zitat Chang YC, Hou T, Merriman B, Osher S (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys 124(2):449–464MathSciNetCrossRef Chang YC, Hou T, Merriman B, Osher S (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J Comput Phys 124(2):449–464MathSciNetCrossRef
3.
Zurück zum Zitat Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337MathSciNetCrossRef Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337MathSciNetCrossRef
4.
Zurück zum Zitat Ye JC, Bresler Y, Moulin P (2002) A self-referencing level-set method for image reconstruction from sparse Fourier samples. Int J Comput Vis 50:253–270CrossRef Ye JC, Bresler Y, Moulin P (2002) A self-referencing level-set method for image reconstruction from sparse Fourier samples. Int J Comput Vis 50:253–270CrossRef
5.
Zurück zum Zitat Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press
6.
Zurück zum Zitat Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MathSciNetCrossRef Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MathSciNetCrossRef
7.
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetCrossRef Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MathSciNetCrossRef
8.
Zurück zum Zitat Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MathSciNetCrossRef Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362MathSciNetCrossRef
9.
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRef Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRef
10.
Zurück zum Zitat Van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472MathSciNetCrossRef Van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472MathSciNetCrossRef
11.
Zurück zum Zitat Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227(24):10178–10195MathSciNetCrossRef Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227(24):10178–10195MathSciNetCrossRef
12.
Zurück zum Zitat Kao CY, Osher S, Yablonovitch E (2005) Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl Phys B 81:235–244CrossRef Kao CY, Osher S, Yablonovitch E (2005) Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl Phys B 81:235–244CrossRef
13.
Zurück zum Zitat He L, Kao CY, Osher S (2007) Incorporating topological derivatives into shape derivatives based level set methods. J Comput Phys 225(1):891–909MathSciNetCrossRef He L, Kao CY, Osher S (2007) Incorporating topological derivatives into shape derivatives based level set methods. J Comput Phys 225(1):891–909MathSciNetCrossRef
14.
Zurück zum Zitat Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52(11–12):2721–2732CrossRef Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transf 52(11–12):2721–2732CrossRef
15.
Zurück zum Zitat Challis VJ (2010) A discrete level-set topology optimization code written in MATLAB. Struct Multidiscip Optim 41:453–464MathSciNetCrossRef Challis VJ (2010) A discrete level-set topology optimization code written in MATLAB. Struct Multidiscip Optim 41:453–464MathSciNetCrossRef
16.
Zurück zum Zitat Wei P, Paulino GH (2020) A parameterized level set method combined with polygonal finite elements in topology optimization. Struct Multidiscip Optim 61(5):1913–1928MathSciNetCrossRef Wei P, Paulino GH (2020) A parameterized level set method combined with polygonal finite elements in topology optimization. Struct Multidiscip Optim 61(5):1913–1928MathSciNetCrossRef
17.
Zurück zum Zitat Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090MathSciNetCrossRef Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090MathSciNetCrossRef
18.
Zurück zum Zitat Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272MathSciNetCrossRef Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272MathSciNetCrossRef
19.
Zurück zum Zitat Belytschko T, Xiao S, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196CrossRef Belytschko T, Xiao S, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196CrossRef
20.
Zurück zum Zitat Van Dijk N, Langelaar M, Van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91(1):67–97MathSciNetCrossRef Van Dijk N, Langelaar M, Van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91(1):67–97MathSciNetCrossRef
21.
Zurück zum Zitat Gain AL, Paulino GH (2013) A critical comparative assessment of differential equation-driven methods for structural topology optimization. Struct Multidiscip Optim 48:685–710MathSciNetCrossRef Gain AL, Paulino GH (2013) A critical comparative assessment of differential equation-driven methods for structural topology optimization. Struct Multidiscip Optim 48:685–710MathSciNetCrossRef
22.
Zurück zum Zitat Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891MathSciNetCrossRef Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891MathSciNetCrossRef
23.
Zurück zum Zitat Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidiscip Optim 51:1159–1172MathSciNetCrossRef Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidiscip Optim 51:1159–1172MathSciNetCrossRef
24.
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRef Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNetCrossRef
25.
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38MathSciNetCrossRef
26.
Zurück zum Zitat Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system: i—interfacial free energy. J Chem Phys 28(2):258–267CrossRef Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system: i—interfacial free energy. J Chem Phys 28(2):258–267CrossRef
27.
Zurück zum Zitat Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27(6):1085–1095CrossRef Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27(6):1085–1095CrossRef
28.
Zurück zum Zitat March R (1992) Visual reconstruction with discontinuities using variational methods. Image Vis Comput 10(1):30–38CrossRef March R (1992) Visual reconstruction with discontinuities using variational methods. Image Vis Comput 10(1):30–38CrossRef
29.
Zurück zum Zitat Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D: Nonlinear Phenom 63(3–4):410–423CrossRef Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D: Nonlinear Phenom 63(3–4):410–423CrossRef
30.
Zurück zum Zitat Aranson I, Kalatsky V, Vinokur V (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1):118CrossRef Aranson I, Kalatsky V, Vinokur V (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1):118CrossRef
31.
Zurück zum Zitat Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization: ESAIM—Control. Optim Calc Var 9:19–48MathSciNetCrossRef Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization: ESAIM—Control. Optim Calc Var 9:19–48MathSciNetCrossRef
32.
Zurück zum Zitat Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566MathSciNet Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566MathSciNet
33.
Zurück zum Zitat Wang MY, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Comput-Aided Mater Des 11:117–138CrossRef Wang MY, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Comput-Aided Mater Des 11:117–138CrossRef
34.
Zurück zum Zitat Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718MathSciNetCrossRef Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718MathSciNetCrossRef
35.
Zurück zum Zitat Gain AL, Paulino GH (2012) Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct Multidiscip Optim 46:327–342MathSciNetCrossRef Gain AL, Paulino GH (2012) Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct Multidiscip Optim 46:327–342MathSciNetCrossRef
36.
Zurück zum Zitat Blank L, Garcke H, Sarbu L, Srisupattarawanit T, Styles V, Voigt A (2012) Phase-field approaches to structural topology optimization. Constrained optimization and optimal control for partial differential equations. Birkhauser, Basel, pp 245–256CrossRef Blank L, Garcke H, Sarbu L, Srisupattarawanit T, Styles V, Voigt A (2012) Phase-field approaches to structural topology optimization. Constrained optimization and optimal control for partial differential equations. Birkhauser, Basel, pp 245–256CrossRef
37.
Zurück zum Zitat Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method: its basis and fundamentals. Elsevier Zienkiewicz O, Taylor R, Zhu J (2005) The finite element method: its basis and fundamentals. Elsevier
38.
Zurück zum Zitat Agrawal V, Gautam SS (2019) IGA: a simplified introduction and implementation details for finite element users. J Inst Eng (India): Ser C 100:561–585 Agrawal V, Gautam SS (2019) IGA: a simplified introduction and implementation details for finite element users. J Inst Eng (India): Ser C 100:561–585
39.
Zurück zum Zitat Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetCrossRef Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetCrossRef
40.
Zurück zum Zitat Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49–52):3270–3296MathSciNetCrossRef Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49–52):3270–3296MathSciNetCrossRef
41.
Zurück zum Zitat Hassani B, Khanzadi M, Tavakkoli SM (2012) An isogeometrical approach to structural topology optimization by optimality criteria. Struct Multidiscip Optim 45:223–233MathSciNetCrossRef Hassani B, Khanzadi M, Tavakkoli SM (2012) An isogeometrical approach to structural topology optimization by optimality criteria. Struct Multidiscip Optim 45:223–233MathSciNetCrossRef
42.
Zurück zum Zitat Tavakkoli M, Hassani B, Ghasemnejad H (2013) Isogeometric topology optimization of structures by using MMA. Int J Optim Civ Eng 3(2):313–26 Tavakkoli M, Hassani B, Ghasemnejad H (2013) Isogeometric topology optimization of structures by using MMA. Int J Optim Civ Eng 3(2):313–26
43.
Zurück zum Zitat Gao J, Xiao M, Zhang Y, Gao L (2020) A comprehensive review of isogeometric topology optimization: methods, applications and prospects. Chin J Mech Eng 33(1):1–14CrossRef Gao J, Xiao M, Zhang Y, Gao L (2020) A comprehensive review of isogeometric topology optimization: methods, applications and prospects. Chin J Mech Eng 33(1):1–14CrossRef
44.
Zurück zum Zitat Wang Y, Benson DJ (2016) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57:19–35MathSciNetCrossRef Wang Y, Benson DJ (2016) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57:19–35MathSciNetCrossRef
45.
Zurück zum Zitat Jahangiry HA, Tavakkoli SM (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetCrossRef Jahangiry HA, Tavakkoli SM (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257MathSciNetCrossRef
46.
Zurück zum Zitat Kumar H, Rakshit S (2023) An isogeometric approach for reaction diffusion based level set methods in topology optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 87295 (American Society of Mechanical Engineers), p V002T02A005 Kumar H, Rakshit S (2023) An isogeometric approach for reaction diffusion based level set methods in topology optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 87295 (American Society of Mechanical Engineers), p V002T02A005
47.
Zurück zum Zitat Dedè L, Borden MJ, Hughes TJ (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465MathSciNetCrossRef Dedè L, Borden MJ, Hughes TJ (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465MathSciNetCrossRef
48.
Zurück zum Zitat Nguyen VP, Anitescu C, Bordas SP, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116MathSciNetCrossRef Nguyen VP, Anitescu C, Bordas SP, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116MathSciNetCrossRef
49.
Zurück zum Zitat Bellini M, Deza R, Giovanbattista N (1997) Exact travelling annular waves in generalized reaction-diffusion equations. Phys Lett A 232(3–4):200–206MathSciNetCrossRef Bellini M, Deza R, Giovanbattista N (1997) Exact travelling annular waves in generalized reaction-diffusion equations. Phys Lett A 232(3–4):200–206MathSciNetCrossRef
50.
Zurück zum Zitat Novotny AA, Sokołowski J (2012) Topological derivatives in shape optimization. Springer Novotny AA, Sokołowski J (2012) Topological derivatives in shape optimization. Springer
51.
Zurück zum Zitat Yaghmaei M, Ghoddosian A, Khatibi MM (2020) A filter-based level set topology optimization method using a 62-line MATLAB code. Struct Multidiscip Optim 62:1001–1018MathSciNetCrossRef Yaghmaei M, Ghoddosian A, Khatibi MM (2020) A filter-based level set topology optimization method using a 62-line MATLAB code. Struct Multidiscip Optim 62:1001–1018MathSciNetCrossRef
52.
Zurück zum Zitat Wang MY, Wang P (2006) The augmented Lagrangian method in structural shape and topology optimization with RBF based level set method. In: CJK-OSM 4: The Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, p 191 Wang MY, Wang P (2006) The augmented Lagrangian method in structural shape and topology optimization with RBF based level set method. In: CJK-OSM 4: The Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, p 191
53.
Zurück zum Zitat Piegl L, Tiller W (2012) The NURBS Book: monographs in visual communication. Springer, Berlin Heidelberg Piegl L, Tiller W (2012) The NURBS Book: monographs in visual communication. Springer, Berlin Heidelberg
55.
Zurück zum Zitat Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. WileyCrossRef Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. WileyCrossRef
56.
Zurück zum Zitat Spink M, Claxton D, de Falco C, Vazquez R (2014) Nurbs toolbox Spink M, Claxton D, de Falco C, Vazquez R (2014) Nurbs toolbox
57.
Zurück zum Zitat Pal A, Rakshit S (2022) Isogeometric shape optimization for design dependent loads. J Comput Inf Sci Eng 22(3):031004CrossRef Pal A, Rakshit S (2022) Isogeometric shape optimization for design dependent loads. J Comput Inf Sci Eng 22(3):031004CrossRef
Metadaten
Titel
 A Comparative Study of Isogeometric Analysis for Topology Optimzation Based on the Level Set and the Phase Field Methods
verfasst von
Harsh Kumar
Sourav Rakshit
Publikationsdatum
05.12.2024
Verlag
Springer London
Erschienen in
Engineering with Computers
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-02075-y