Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.05.2019 | Ausgabe 8/2019

Water Resources Management 8/2019

A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction

Zeitschrift:
Water Resources Management > Ausgabe 8/2019
Autoren:
Ahmad Khazaee Poul, Mojtaba Shourian, Hadi Ebrahimi
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Reliable and precise prediction of the rivers flow is a major concern in hydrologic and water resources analysis. In this study, multi-linear regression (MLR) as a statistical method, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) as non-linear ones and K-nearest neighbors (KNN) as a non-parametric regression method are applied to predict the monthly flow in the St. Clair River between the US and Canada. In the developed methods, six scenarios for input combinations are defined in order to study the effect of different input data on the outcomes. Performances of the models are evaluated using statistical indices as the performance criteria. Results obtained show that adding lag times of flow, temperature and precipitation to the inputs improve the accuracy of the predictions significantly. For a further investigation, the aforementioned models are coupled with wavelet transform. Using the wavelet transform improves the values of Nash-Sutcliff coefficient to 0.907, 0.930, 0.923, and 0.847 from 0.340, 0.404, 0.376 and 0.419 respectively, by coupling it with MLR, ANN, ANFIS, and KNN models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2019

Water Resources Management 8/2019 Zur Ausgabe