Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2015

01.04.2015

A Comparative Study of Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 Tube Actuators

verfasst von: J. S. Owusu-Danquah, A. F. Saleeb, B. Dhakal, S. A. Padula II

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A shape memory alloy (SMA) actuator typically has to operate for a large number of thermomechanical cycles due to its application requirements. Therefore, it is necessary to understand the cyclic behavioral response of the SMA actuation material and the devices into which they are incorporated under extended cycling conditions. The present work is focused on the nature of the cyclic, evolutionary behavior of two widely used SMA actuator material systems: (1) a commercially available Ni49.9Ti50.1, and (2) a developmental high-temperature Ni50.3Ti29.7Hf20 alloy. Using a recently developed general SMA modeling framework that utilizes multiple inelastic mechanisms, differences and similarities between the two classes of materials are studied, accounting for extended number of thermal cycles under a constant applied tensile/compressive force and under constant applied torque loading. From the detailed results of the simulations, there were significant qualitative differences in the evolution of deformation responses for the two different materials. In particular, the Ni49.9Ti50.1 tube showed significant evolution of the deformation response, whereas the Ni50.3Ti29.7Hf20 tube stabilized quickly. Moreover, there were significant differences in the tension-compression-shear asymmetry properties in the two materials. More specifically, the Ni50.3Ti29.7Hf20 tube exhibited much higher asymmetry effects, especially at low stress levels, compared to the Ni49.9Ti50.1. For both SMA tubes, the evolution of the deformation response under thermal cycling typically exhibited regions of initial transients, and subsequent evolution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.T. Calkins and J.H. Mabe, Shape Memory Alloy Based Morphing Aerostructures, J. Mech. Desi., 2010, 132(11), p 111012CrossRef F.T. Calkins and J.H. Mabe, Shape Memory Alloy Based Morphing Aerostructures, J. Mech. Desi., 2010, 132(11), p 111012CrossRef
2.
Zurück zum Zitat E.A. Williams, G. Shaw, and M. Elahinia, Control of an Automotive Shape Memory Alloy Mirror Actuator, Mechatronics, 2010, 20(5), p 527–534CrossRef E.A. Williams, G. Shaw, and M. Elahinia, Control of an Automotive Shape Memory Alloy Mirror Actuator, Mechatronics, 2010, 20(5), p 527–534CrossRef
3.
Zurück zum Zitat O. Benafan, W.U. Notardonato, B.J. Meneghelli, and R. Vaidyanathan, Design and Development of a Shape Memory Alloy Activated Heat Pipe-Based Thermal Switch, Smart Mater. Struct., 2013, 22(10), p 105017CrossRef O. Benafan, W.U. Notardonato, B.J. Meneghelli, and R. Vaidyanathan, Design and Development of a Shape Memory Alloy Activated Heat Pipe-Based Thermal Switch, Smart Mater. Struct., 2013, 22(10), p 105017CrossRef
4.
Zurück zum Zitat D.J. Hartl and D.C. Lagoudas, Aerospace Applications of Shape Memory Alloys, Proc. Inst. Mech. Eng. Part G, 2007, 221(4), p 535–552CrossRef D.J. Hartl and D.C. Lagoudas, Aerospace Applications of Shape Memory Alloys, Proc. Inst. Mech. Eng. Part G, 2007, 221(4), p 535–552CrossRef
5.
Zurück zum Zitat S.A. Padula II, G. Bigelow, R.D. Noebe, D. Gaydosh, and A. Garg, Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications, International Conference on Shape Memory and Superelastic Technologies, 7-11 May 2006 (Pacific Grove, CA) S.A. Padula II, G. Bigelow, R.D. Noebe, D. Gaydosh, and A. Garg, Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications, International Conference on Shape Memory and Superelastic Technologies, 7-11 May 2006 (Pacific Grove, CA)
6.
Zurück zum Zitat A.F. Saleeb, B. Dhakal, S. Dilibal, J.S. Owusu-Danquah, and S.A. Padula, II, On the Modeling of the Thermo-mechanical Responses of Four Different Classes of NiTi-Based Shape Memory Materials Using a General Multi-mechanism Framework, Mech. Mater., 2015, 80, p 67–86CrossRef A.F. Saleeb, B. Dhakal, S. Dilibal, J.S. Owusu-Danquah, and S.A. Padula, II, On the Modeling of the Thermo-mechanical Responses of Four Different Classes of NiTi-Based Shape Memory Materials Using a General Multi-mechanism Framework, Mech. Mater., 2015, 80, p 67–86CrossRef
7.
Zurück zum Zitat S. Besseghini, E. Villa, and A. Tuissi, Ni-Ti-Hf Shape Memory Alloy, Effect of Aging and Thermal Cycling, Mater. Sci. Eng. A, 1999, 273, p 390–394CrossRef S. Besseghini, E. Villa, and A. Tuissi, Ni-Ti-Hf Shape Memory Alloy, Effect of Aging and Thermal Cycling, Mater. Sci. Eng. A, 1999, 273, p 390–394CrossRef
8.
Zurück zum Zitat G.S. Bigelow, A. Garg, S.A. Padula, II, D.J. Gaydosh, and R.D. Noebe, Load-Biased Shape-Memory and Superelastic Properties of a Precipitation Strengthened High-Temperature Ni50.3Ti29.7Hf20 Alloy, Scripta Mater., 2011, 64(8), p 725–728CrossRef G.S. Bigelow, A. Garg, S.A. Padula, II, D.J. Gaydosh, and R.D. Noebe, Load-Biased Shape-Memory and Superelastic Properties of a Precipitation Strengthened High-Temperature Ni50.3Ti29.7Hf20 Alloy, Scripta Mater., 2011, 64(8), p 725–728CrossRef
9.
Zurück zum Zitat H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., 2013, 61(19), p 7422–7431CrossRef H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, and Y.I. Chumlyakov, Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., 2013, 61(19), p 7422–7431CrossRef
10.
Zurück zum Zitat J. Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Int. Mater. Rev., 2010, 55(5), p 257–315CrossRef J. Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Int. Mater. Rev., 2010, 55(5), p 257–315CrossRef
11.
Zurück zum Zitat A.Y.N. Sofla, D.M. Elzey, and H.N.G. Wadley, Two-Way Antagonistic Shape Actuation Based on the One-Way Shape Memory Effect, J. Intell. Mater. Syst. Struct., 2008, 19(9), p 1017–1027CrossRef A.Y.N. Sofla, D.M. Elzey, and H.N.G. Wadley, Two-Way Antagonistic Shape Actuation Based on the One-Way Shape Memory Effect, J. Intell. Mater. Syst. Struct., 2008, 19(9), p 1017–1027CrossRef
12.
Zurück zum Zitat A. Nespoli, C.A. Biffi, R. Casati, E. Villa, A. Tuissi, and F. Passaretti, New Developments on Mini/Micro Shape Memory Actuators, Smart Actuation and Sensing Systems—Recent Advances and Future Challenges, G. Berselli, R. Vertechy, and G. Vassura, Ed., ISBN 978-953-51-0798-9 A. Nespoli, C.A. Biffi, R. Casati, E. Villa, A. Tuissi, and F. Passaretti, New Developments on Mini/Micro Shape Memory Actuators, Smart Actuation and Sensing Systems—Recent Advances and Future Challenges, G. Berselli, R. Vertechy, and G. Vassura, Ed., ISBN 978-953-51-0798-9
13.
Zurück zum Zitat D.J. Arbogast, R.T. Ruggeri, and R.C. Bussom, Development of a ¼-Scale NiTinol Actuator for Reconfigurable Structures, Proceecdings of SPIE 6930, Industrial and Commercial Applications of Smart Structures Technologies 2008, 69300L, March19, 2008. doi:10.1117/12.775929 D.J. Arbogast, R.T. Ruggeri, and R.C. Bussom, Development of a ¼-Scale NiTinol Actuator for Reconfigurable Structures, Proceecdings of SPIE 6930, Industrial and Commercial Applications of Smart Structures Technologies 2008, 69300L, March19, 2008. doi:10.​1117/​12.​775929
14.
Zurück zum Zitat P.A. Jardine, J.D. Bartley-Cho, and J.S. Flanagan, Improved Design and Performance of the SMA Torque Tube for the DARPA Smart Wing program, Proceedings of SPIE 3674, Smart Structures and Materials1999: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 260, July 9, 1999. doi:10.1117/12.351564 P.A. Jardine, J.D. Bartley-Cho, and J.S. Flanagan, Improved Design and Performance of the SMA Torque Tube for the DARPA Smart Wing program, Proceedings of SPIE 3674, Smart Structures and Materials1999: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 260, July 9, 1999. doi:10.​1117/​12.​351564
15.
Zurück zum Zitat A.C. Keefe and G.P. Carman, Thermo-mechanical Characterization of Shape Memory Alloy Torque Tube Actuators, Smart Mater. Struct., 2000, 9(5), p 665CrossRef A.C. Keefe and G.P. Carman, Thermo-mechanical Characterization of Shape Memory Alloy Torque Tube Actuators, Smart Mater. Struct., 2000, 9(5), p 665CrossRef
16.
Zurück zum Zitat E. Patoor, A. Eberhardt, and M. Berveiller, Micromechanical Modelling of Superelasticity in Shape Memory Alloys, J. Phys. IV, 1996, 6(C1), p 277–292 E. Patoor, A. Eberhardt, and M. Berveiller, Micromechanical Modelling of Superelasticity in Shape Memory Alloys, J. Phys. IV, 1996, 6(C1), p 277–292
17.
Zurück zum Zitat M. Huang, X. Gao, and L.C. Brinson, A Multivariant Micromechanical Model for SMAs Part 2. Polycrystal Model, Int. J. Plast, 2000, 16(10), p 1371–1390CrossRef M. Huang, X. Gao, and L.C. Brinson, A Multivariant Micromechanical Model for SMAs Part 2. Polycrystal Model, Int. J. Plast, 2000, 16(10), p 1371–1390CrossRef
18.
Zurück zum Zitat X. Gao, M. Huang, and L.C. Brinson, A Simplified Multivariant SMA Model Based on Invariant Plane Nature of Martensitic Transformation, J. Intell. Mater. Syst. Struct., 2002, 13(12), p 795–810CrossRef X. Gao, M. Huang, and L.C. Brinson, A Simplified Multivariant SMA Model Based on Invariant Plane Nature of Martensitic Transformation, J. Intell. Mater. Syst. Struct., 2002, 13(12), p 795–810CrossRef
19.
Zurück zum Zitat D.C. Lagoudas and P.B. Entchev, Modeling of Transformation-Induced Plasticity and Its Effect on the Behavior of Porous Shape Memory Alloys Part I: Constitutive Model for Fully Dense SMAs, Mech. Mater., 2004, 36(9), p 865–892CrossRef D.C. Lagoudas and P.B. Entchev, Modeling of Transformation-Induced Plasticity and Its Effect on the Behavior of Porous Shape Memory Alloys Part I: Constitutive Model for Fully Dense SMAs, Mech. Mater., 2004, 36(9), p 865–892CrossRef
20.
Zurück zum Zitat P. Popov and D.C. Lagoudas, A 3-D Constitutive Model for Shape Memory Alloys Incorporating Pseudoelasticity and Detwinning of Self-Accommodated Martensite, Int. J. Plast, 2007, 23(10), p 1679–1720CrossRef P. Popov and D.C. Lagoudas, A 3-D Constitutive Model for Shape Memory Alloys Incorporating Pseudoelasticity and Detwinning of Self-Accommodated Martensite, Int. J. Plast, 2007, 23(10), p 1679–1720CrossRef
21.
Zurück zum Zitat M.A. Qidwai and D.C. Lagoudas, Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Methods Eng., 2008, 47(6), p 1123–1168CrossRef M.A. Qidwai and D.C. Lagoudas, Numerical Implementation of a Shape Memory Alloy Thermomechanical Constitutive Model Using Return Mapping Algorithms, Int. J. Numer. Methods Eng., 2008, 47(6), p 1123–1168CrossRef
22.
Zurück zum Zitat D.J. Hartl, J.T. Mooney, D.C. Lagoudas, F.T. Calkins, and J.H. Mabe, Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: II. Experimentally Validated Numerical Analysis, Smart Mater. Struct., 2010, 19(1), p 015021CrossRef D.J. Hartl, J.T. Mooney, D.C. Lagoudas, F.T. Calkins, and J.H. Mabe, Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: II. Experimentally Validated Numerical Analysis, Smart Mater. Struct., 2010, 19(1), p 015021CrossRef
23.
Zurück zum Zitat A.F. Saleeb, S.A. Padula, II, and A. Kumar, A Multi-axial, Multimechanism Based Constitutive Model for the Comprehensive Representation of the Evolutionary Response of SMAs Under General Thermomechanical Loading Conditions, Int. J. Plast., 2011, 27(5), p 655–687CrossRef A.F. Saleeb, S.A. Padula, II, and A. Kumar, A Multi-axial, Multimechanism Based Constitutive Model for the Comprehensive Representation of the Evolutionary Response of SMAs Under General Thermomechanical Loading Conditions, Int. J. Plast., 2011, 27(5), p 655–687CrossRef
24.
Zurück zum Zitat A.F. Saleeb, B. Dhakal, M.S. Hosseini, and S.A. Padula, II, Large Scale Simulation of NiTi Helical Spring Actuators Under Repeated Thermomechanical Cycles, Smart Mater. Struct., 2013, 22(9), p 094006CrossRef A.F. Saleeb, B. Dhakal, M.S. Hosseini, and S.A. Padula, II, Large Scale Simulation of NiTi Helical Spring Actuators Under Repeated Thermomechanical Cycles, Smart Mater. Struct., 2013, 22(9), p 094006CrossRef
25.
Zurück zum Zitat A.F. Saleeb, T.Y. Chang, W. Graf, and S. Yingyeunyong, A Hybrid/Mixed Model for Non-linear Shell Analysis and Its Applications to Large-Rotation Problems, Int. J. Numer. Methods Eng., 1990, 29(2), p 407–446CrossRef A.F. Saleeb, T.Y. Chang, W. Graf, and S. Yingyeunyong, A Hybrid/Mixed Model for Non-linear Shell Analysis and Its Applications to Large-Rotation Problems, Int. J. Numer. Methods Eng., 1990, 29(2), p 407–446CrossRef
26.
Zurück zum Zitat ABAQUS, Abaqus Analysis User’s Manual, SIMULIA Inc, RI, 2012 ABAQUS, Abaqus Analysis User’s Manual, SIMULIA Inc, RI, 2012
27.
Zurück zum Zitat S.A. Padula, II, D. Gaydosh, A. Saleeb, and B. Dhakal, Transients and Evolution in NiTi, Exper. Mech., 2014, 54(5), p 709–715CrossRef S.A. Padula, II, D. Gaydosh, A. Saleeb, and B. Dhakal, Transients and Evolution in NiTi, Exper. Mech., 2014, 54(5), p 709–715CrossRef
28.
Zurück zum Zitat A.F. Saleeb, B. Dhakal, S.A. Padula, and D.J. Gaydosh, Calibration of a Three-Dimensional Multimechanism Shape Memory Alloy Material Model for the Prediction of the Cyclic “Attraction” Character in Binary NiTi Alloys, J. Intell. Mater. Syst. Struct., 2013, 24(1), p 70–88CrossRef A.F. Saleeb, B. Dhakal, S.A. Padula, and D.J. Gaydosh, Calibration of a Three-Dimensional Multimechanism Shape Memory Alloy Material Model for the Prediction of the Cyclic “Attraction” Character in Binary NiTi Alloys, J. Intell. Mater. Syst. Struct., 2013, 24(1), p 70–88CrossRef
29.
Zurück zum Zitat A.F. Saleeb, B. Dhakal, S.A. Padula, II, and D.J. Gaydosh, Calibration of SMA Material Model for the Prediction of the ‘Evolutionary’ Load-Bias Behavior Under Conditions of Extended Thermal Cycling, Smart Mater. Struct., 2013, 22(9), p 094017CrossRef A.F. Saleeb, B. Dhakal, S.A. Padula, II, and D.J. Gaydosh, Calibration of SMA Material Model for the Prediction of the ‘Evolutionary’ Load-Bias Behavior Under Conditions of Extended Thermal Cycling, Smart Mater. Struct., 2013, 22(9), p 094017CrossRef
30.
Zurück zum Zitat S.A. Padula, II, S. Qiu, D. Gaydosh, R.D. Noebe, G. Bigelow, A. Garg, and R. Vaidyanathan, Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi, Metall. Mater. Trans. A, 2012, 43(12), p 4610–4621CrossRef S.A. Padula, II, S. Qiu, D. Gaydosh, R.D. Noebe, G. Bigelow, A. Garg, and R. Vaidyanathan, Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi, Metall. Mater. Trans. A, 2012, 43(12), p 4610–4621CrossRef
31.
Zurück zum Zitat R. Noebe, Pitfalls and Potential for Developing Stable High-Temperature Shape Memory Alloys through Nano-Precipitate Strengthening, 2012 Technical Conference Proceedings, NASA Fundamental Aeronautics Program, March 13-15, 2012 (Cleveland, OH) R. Noebe, Pitfalls and Potential for Developing Stable High-Temperature Shape Memory Alloys through Nano-Precipitate Strengthening, 2012 Technical Conference Proceedings, NASA Fundamental Aeronautics Program, March 13-15, 2012 (Cleveland, OH)
32.
Zurück zum Zitat P. Sittner, Y. Hara, and M. Tokuda, Experimental Study on the Thermoelastic Martensitic Transformation in Shape Memory Alloy Polycrystal Induced by Combined External Forces, Metall. Mater. Trans. A, 1995, 26(11), p 2923–2935CrossRef P. Sittner, Y. Hara, and M. Tokuda, Experimental Study on the Thermoelastic Martensitic Transformation in Shape Memory Alloy Polycrystal Induced by Combined External Forces, Metall. Mater. Trans. A, 1995, 26(11), p 2923–2935CrossRef
33.
Zurück zum Zitat W.F. Chen and A.F. Saleeb, Constitutive Equations for Engineering Materials 2nd Revised edn, Elsevier, Amsterdam, 1994 W.F. Chen and A.F. Saleeb, Constitutive Equations for Engineering Materials 2nd Revised edn, Elsevier, Amsterdam, 1994
Metadaten
Titel
A Comparative Study of Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 Tube Actuators
verfasst von
J. S. Owusu-Danquah
A. F. Saleeb
B. Dhakal
S. A. Padula II
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1425-1

Weitere Artikel der Ausgabe 4/2015

Journal of Materials Engineering and Performance 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.