Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.06.2016 | Methodologies and Application | Ausgabe 22/2017

Soft Computing 22/2017

A comparative study on swarm intelligence for structure learning of Bayesian networks

Zeitschrift:
Soft Computing > Ausgabe 22/2017
Autoren:
Junzhong Ji, Cuicui Yang, Jiming Liu, Jinduo Liu, Baocai Yin
Wichtige Hinweise
Communicated by V. Loia.

Abstract

A Bayesian network (BN) is an important probabilistic model in the field of artificial intelligence and a powerful formalism used to describe uncertainty in the real world. As science and technology develop, considerable data on complex systems have been acquired by various means, which presents a significant challenge regarding how to accurately and robustly learn a network structure for a complex system. To address this challenge, many BN structure learning methods based on swarm intelligence have been developed. In this study, we perform a systematic comparison of three typical methods based on ant colony optimization, artificial bee colony algorithm, and bacterial foraging optimization. First, we analyze and summarize their main characteristics from the perspective of stochastic searching. Second, we conduct thorough experimental comparisons to examine the roles of different mechanisms in each method by means of multiaspect metrics, i.e., the K2 score, structural differences, and execution time. Next, we perform further experiments to validate the robustness of different algorithms on some benchmark data sets with noise. Finally, we present the prospects and references for researchers who are engaged in learning BN networks.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 22/2017

Soft Computing 22/2017 Zur Ausgabe

Premium Partner

    Bildnachweise