Skip to main content
Erschienen in: Environmental Earth Sciences 8/2019

01.04.2019 | Original Article

A comparison of numerical and Lu modeling of water flow and heat transport with laboratory experiments

verfasst von: Jie Ren, Wenbing Zhang, Jie Yang, Zhenzhong Shen, Jian Zhao, Yinjun Zhou, Zhenhua Wang

Erschienen in: Environmental Earth Sciences | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reservoirs are considered to result in significant changes to river water temperature. Discharge of deep water has a large impact on aquatic ecosystems downstream of dam and on both river banks. A laboratory sand tank test investigation was conducted to simulate water flow and thermal dynamics in the riparian zone. The sand temperature (ST) data generated were used to validate and compare HYDRUS-2D, a physically based numerical model, with Lu et al.’s (Soil Sci Soc Am J 71(1):8–14, 2007) soil thermal conductivity model under different water temperature, hydraulic head and radiation temperature conditions. The Richards model and the heat conduction model were coupled through the Horton thermal conductivity model and the Lu et al. (Soil Sci Soc Am J 71(1):8–14, 2007) model, respectively. The results demonstrated the success of model coupling and its application for investigating water flow and thermal dynamics in the riparian zone. The Lu et al. (Soil Sci Soc Am J 71(1):8–14, 2007) model based on COMSOL and the Horton thermal conductivity model based on HYDRUS each had their own advantages. Global analysis showed that the Lu et al. (Soil Sci Soc Am J 71(1):8–14, 2007) model was better able to simulate the riparian zone temperature field under the investigated experimental conditions. The sensitivity analysis results showed that the parameters nv, T and H had a considerable influence on the temperature field in the model, of which nv was the most sensitive, whereas the parameters ks, α, θs, and θr were relatively less sensitive to the temperature field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alekseevich AN (2017) Numerical modelling of tailings dam thermal-seepage regime considering phase transitions. Model Simul Eng 4:1–10CrossRef Alekseevich AN (2017) Numerical modelling of tailings dam thermal-seepage regime considering phase transitions. Model Simul Eng 4:1–10CrossRef
Zurück zum Zitat Arntzen EV, Geist DR, Dresel PE (2006) Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river. River Res Appl 22(8):937–946CrossRef Arntzen EV, Geist DR, Dresel PE (2006) Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river. River Res Appl 22(8):937–946CrossRef
Zurück zum Zitat Boutt DF, Fleming BJ (2009) Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer. Water Resour Res 45(4):546–550CrossRef Boutt DF, Fleming BJ (2009) Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer. Water Resour Res 45(4):546–550CrossRef
Zurück zum Zitat Brunetti G, Saito H, Saito T, Šimůnek J (2017) A computationally efficient pseudo-3D model for the numerical analysis of borehole heat exchangers. Appl Energy 208:1113–1127CrossRef Brunetti G, Saito H, Saito T, Šimůnek J (2017) A computationally efficient pseudo-3D model for the numerical analysis of borehole heat exchangers. Appl Energy 208:1113–1127CrossRef
Zurück zum Zitat Brunetti G, Porti M, Patrizia P (2018) Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Appl Energy 221:204–219CrossRef Brunetti G, Porti M, Patrizia P (2018) Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Appl Energy 221:204–219CrossRef
Zurück zum Zitat Casado A, Hannah DM, Peiry JL, Ferreras AMC (2013) Influence of dam-induced hydrological regulation on summer water temperature: Sauce Grande River, Argentina. Ecohydrology 6(4):523–535CrossRef Casado A, Hannah DM, Peiry JL, Ferreras AMC (2013) Influence of dam-induced hydrological regulation on summer water temperature: Sauce Grande River, Argentina. Ecohydrology 6(4):523–535CrossRef
Zurück zum Zitat Chui TFM, Freyberg DL (2007) The use of COMSOL for integrated hydrological modeling. In: COMSOL conference, Boston, pp 217–23 Chui TFM, Freyberg DL (2007) The use of COMSOL for integrated hydrological modeling. In: COMSOL conference, Boston, pp 217–23
Zurück zum Zitat Chung SO, Horton R (1987) Soil heat and water flow with a partial surface mulch. Water Resour Res 23(12):2175–2186CrossRef Chung SO, Horton R (1987) Soil heat and water flow with a partial surface mulch. Water Resour Res 23(12):2175–2186CrossRef
Zurück zum Zitat Curry RA, Gehrels J, Noakes DLG, Swainson R (1994) Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats. Hydrobiologia 277(2):121–134CrossRef Curry RA, Gehrels J, Noakes DLG, Swainson R (1994) Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats. Hydrobiologia 277(2):121–134CrossRef
Zurück zum Zitat Fritz B, Arntzen EV (2007) Effect of rapidly changing river stage on uranium flux through the hyporheic zone. Groundwater 45(6):753–760CrossRef Fritz B, Arntzen EV (2007) Effect of rapidly changing river stage on uranium flux through the hyporheic zone. Groundwater 45(6):753–760CrossRef
Zurück zum Zitat Gardner WR, Hillel D, Benyamini Y (1970) Post-irrigation movement of soil water: 1. Redistribution. Water Resour Res 6(3):851–861CrossRef Gardner WR, Hillel D, Benyamini Y (1970) Post-irrigation movement of soil water: 1. Redistribution. Water Resour Res 6(3):851–861CrossRef
Zurück zum Zitat Gerecht KE, Cardenas MB, Guswa AJ, Sawyer AH, Nowinski JD, Swanson TE (2011) Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river. Water Resour Res 47(47):104–121 Gerecht KE, Cardenas MB, Guswa AJ, Sawyer AH, Nowinski JD, Swanson TE (2011) Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river. Water Resour Res 47(47):104–121
Zurück zum Zitat Giraldo NM, Bayer P, Blum P, Cirpka O (2011) Propagation of seasonal temperature signals into an aquifer upon bank infiltration. Groundwater 49(4):491–502CrossRef Giraldo NM, Bayer P, Blum P, Cirpka O (2011) Propagation of seasonal temperature signals into an aquifer upon bank infiltration. Groundwater 49(4):491–502CrossRef
Zurück zum Zitat Harleman DRF (1982) Hydrothermal analysis of lakes and reservoirs. J Hydraul Div 108(3):301–325 Harleman DRF (1982) Hydrothermal analysis of lakes and reservoirs. J Hydraul Div 108(3):301–325
Zurück zum Zitat Healy RW, Ronan AD (1996) Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media; modification of the US geological survey’s computer program VS2DT. U.S. Geological Survey. Water-Resource Investigation Report 96-4230 Healy RW, Ronan AD (1996) Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media; modification of the US geological survey’s computer program VS2DT. U.S. Geological Survey. Water-Resource Investigation Report 96-4230
Zurück zum Zitat Ho IH, Dickson M (2017) Numerical modeling of heat production using geothermal energy for a snow-melting system. Geomech Energy Environ 10:42–51CrossRef Ho IH, Dickson M (2017) Numerical modeling of heat production using geothermal energy for a snow-melting system. Geomech Energy Environ 10:42–51CrossRef
Zurück zum Zitat Kipp KL (1987) A computer code for simulation of heat and solution transport in three-dimensional groundwater flow systems. USGS Water Resources Investigations Report, Denver, pp 86–4095 Kipp KL (1987) A computer code for simulation of heat and solution transport in three-dimensional groundwater flow systems. USGS Water Resources Investigations Report, Denver, pp 86–4095
Zurück zum Zitat Laganière J, Paré D, Bergeron Y, Chen HYH (2012) The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biol Biochem 53:18–27CrossRef Laganière J, Paré D, Bergeron Y, Chen HYH (2012) The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biol Biochem 53:18–27CrossRef
Zurück zum Zitat Liu Z, Yu X (2011) Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotech 6(2):51–65CrossRef Liu Z, Yu X (2011) Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotech 6(2):51–65CrossRef
Zurück zum Zitat Lu S, Ren TS, Gong YS, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14CrossRef Lu S, Ren TS, Gong YS, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14CrossRef
Zurück zum Zitat Mark O, Tony DA, Andrew JD (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353(1–2):289–303 Mark O, Tony DA, Andrew JD (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353(1–2):289–303
Zurück zum Zitat Milly PCD (1987) Estimation of the Brooks Corey parameters from water retention data. Water Resour Res 23:1085–1089CrossRef Milly PCD (1987) Estimation of the Brooks Corey parameters from water retention data. Water Resour Res 23:1085–1089CrossRef
Zurück zum Zitat Nowinski JD, Cardenas MB, Lightbody AF, Sawyer A (2012) Hydraulic and thermal response of groundwater–surface water exchange to flooding in an experimental aquifer. J Hydrol 472–473(23):184–192CrossRef Nowinski JD, Cardenas MB, Lightbody AF, Sawyer A (2012) Hydraulic and thermal response of groundwater–surface water exchange to flooding in an experimental aquifer. J Hydrol 472–473(23):184–192CrossRef
Zurück zum Zitat Oosterbaan H, Janiszewski M, Uotinen L, Siren T, Rinne M (2016) Numerical thermal back-calculation of the Kerava Solar Village underground thermal energy storage. Procedia Eng 191:352–360CrossRef Oosterbaan H, Janiszewski M, Uotinen L, Siren T, Rinne M (2016) Numerical thermal back-calculation of the Kerava Solar Village underground thermal energy storage. Procedia Eng 191:352–360CrossRef
Zurück zum Zitat Ren J, Wang XP, Shen ZZ, Zhao J, Yang J, Ye M, Zhou YJ, Wang ZH (2018) Heat tracer test in a riparian zone: laboratory experiments and numerical modelling. J Hydrol 563:560–575CrossRef Ren J, Wang XP, Shen ZZ, Zhao J, Yang J, Ye M, Zhou YJ, Wang ZH (2018) Heat tracer test in a riparian zone: laboratory experiments and numerical modelling. J Hydrol 563:560–575CrossRef
Zurück zum Zitat Saito H, Šimůnek J, Mohanty BP (2006) Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J 5(2):784–800CrossRef Saito H, Šimůnek J, Mohanty BP (2006) Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J 5(2):784–800CrossRef
Zurück zum Zitat Shao W, Bogaard T, Bakker M (2014) How to use comsol multiphysics for coupled dual-permeability hydrological and slope stability modeling. Procedia Earth Planet Sci 9:83–90CrossRef Shao W, Bogaard T, Bakker M (2014) How to use comsol multiphysics for coupled dual-permeability hydrological and slope stability modeling. Procedia Earth Planet Sci 9:83–90CrossRef
Zurück zum Zitat Šimůnek J, Sejna M, van Genuchten MT (1999) HYDRUS-2D simulating water flow, heat, and solute transport in two-dimensional variably saturated media. International Ground Water Modeling Center, Riverside Šimůnek J, Sejna M, van Genuchten MT (1999) HYDRUS-2D simulating water flow, heat, and solute transport in two-dimensional variably saturated media. International Ground Water Modeling Center, Riverside
Zurück zum Zitat van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRef van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRef
Zurück zum Zitat Vogt T, Schirmer M, Cirpka O (2012) Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrol Earth Syst Sci 16(2):473–487CrossRef Vogt T, Schirmer M, Cirpka O (2012) Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrol Earth Syst Sci 16(2):473–487CrossRef
Zurück zum Zitat Wang JD, Gong SH, Xu D, Juan S, Mu JX (2013) Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS-2D. Irrig Drain 62(1):97–106CrossRef Wang JD, Gong SH, Xu D, Juan S, Mu JX (2013) Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS-2D. Irrig Drain 62(1):97–106CrossRef
Zurück zum Zitat Wu ZW, Song HZ (2015) Numerical simulation of embankment dam seepage monitoring with temperature based on thermal-hydro coupling model. Rock Soil Mech 36:584–590 (in Chinese) Wu ZW, Song HZ (2015) Numerical simulation of embankment dam seepage monitoring with temperature based on thermal-hydro coupling model. Rock Soil Mech 36:584–590 (in Chinese)
Zurück zum Zitat Xu C, Dowd PA, Tian ZF (2015) A simplified coupled hydro-thermal model for enhanced geothermal systems. Appl Energy 140:135–145CrossRef Xu C, Dowd PA, Tian ZF (2015) A simplified coupled hydro-thermal model for enhanced geothermal systems. Appl Energy 140:135–145CrossRef
Zurück zum Zitat Yosef TY, Song CR, Chang KT (2017) Hydro-thermal coupled analysis for health monitoring of embankment dams. Acta Geotech 4:1–9 Yosef TY, Song CR, Chang KT (2017) Hydro-thermal coupled analysis for health monitoring of embankment dams. Acta Geotech 4:1–9
Zurück zum Zitat Zhao Y, Zhai XF, Wang ZH, Li HJ, Jiang R, Hill RL, Si B, Hao F (2018) Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau. Agric Water Manag 202:99–112CrossRef Zhao Y, Zhai XF, Wang ZH, Li HJ, Jiang R, Hill RL, Si B, Hao F (2018) Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau. Agric Water Manag 202:99–112CrossRef
Metadaten
Titel
A comparison of numerical and Lu modeling of water flow and heat transport with laboratory experiments
verfasst von
Jie Ren
Wenbing Zhang
Jie Yang
Zhenzhong Shen
Jian Zhao
Yinjun Zhou
Zhenhua Wang
Publikationsdatum
01.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 8/2019
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-019-8269-1

Weitere Artikel der Ausgabe 8/2019

Environmental Earth Sciences 8/2019 Zur Ausgabe