Skip to main content
Erschienen in: Meccanica 10/2018

29.03.2018

A compliant mechanism with variable stiffness achieved by rotary actuators and shape-memory alloy

verfasst von: Adel Mekaouche, Frédéric Chapelle, Xavier Balandraud

Erschienen in: Meccanica | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this article is to study the consequences of the active stiffening of a compliant mechanism on the workspace created by the deformation of its structure. In connection with recent soft robotics research integrating shape-memory alloys (SMAs), the variation in stiffness over time is here obtained by the thermal activation of a nickel–titanium SMA spring. The workspace is created by the deformation (in the strength of materials sense) controlled by two rotary actuators acting on a structure comprising two angled flexible beams. In addition to a natural variation in the elasticity modulus of the SMA component during its thermal activation, its shape reconfiguration adds a structural deformation modifying the workspace. The existence of a common area between the workspaces of the mechanism corresponding to the non-activated and activated modes of the SMA is preserved. Several compliance maps are determined from measurements using a laser tracker targeting a given position of the loaded structure. The impact of SMA pre-stretch on stiffness variability is compared to that of a change in Young’s modulus. Variations in the stiffness distributions between the two modes reveal interesting properties (stiffness sign inversion, anisotropy) for the future optimal design of compliant mechanisms with high versatility, associating the spatial positions of the effector with variable stiffness values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lobontiu N (2002) Compliant mechanisms: design of flexure hinges. CRC Press, Boca RatonCrossRef Lobontiu N (2002) Compliant mechanisms: design of flexure hinges. CRC Press, Boca RatonCrossRef
2.
Zurück zum Zitat Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. Wiley, ChichesterCrossRef Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. Wiley, ChichesterCrossRef
3.
Zurück zum Zitat Gong J, Pang J, Zhang Y (2014) Stiffness analysis of a compliant mechanism considering complex deformations of all flexible structure units. Micro Nanosyst 6(3):156–162CrossRef Gong J, Pang J, Zhang Y (2014) Stiffness analysis of a compliant mechanism considering complex deformations of all flexible structure units. Micro Nanosyst 6(3):156–162CrossRef
4.
Zurück zum Zitat Ding B, Li Y, Tang Y (2015) Workspace analysis for a 3-DOF compliant parallel mechanism based on SimMechanics. In: 7th International Conference on Cybernetics and Intelligent Systems (CIS) and Conference on Robotics, Automation and Mechatronics (RAM), IEEE, pp 48–53 Ding B, Li Y, Tang Y (2015) Workspace analysis for a 3-DOF compliant parallel mechanism based on SimMechanics. In: 7th International Conference on Cybernetics and Intelligent Systems (CIS) and Conference on Robotics, Automation and Mechatronics (RAM), IEEE, pp 48–53
5.
Zurück zum Zitat Hao G, Li H (2016) Extended static modeling and analysis of compliant compound parallelogram mechanisms considering the initial internal axial force. J Mech Robot 8(4):041008–041011MathSciNetCrossRef Hao G, Li H (2016) Extended static modeling and analysis of compliant compound parallelogram mechanisms considering the initial internal axial force. J Mech Robot 8(4):041008–041011MathSciNetCrossRef
6.
Zurück zum Zitat Yu J, Lu D, Hao G (2016) Design and analysis of a compliant parallel pan-tilt platform. Meccanica 51(7):1559–1570CrossRef Yu J, Lu D, Hao G (2016) Design and analysis of a compliant parallel pan-tilt platform. Meccanica 51(7):1559–1570CrossRef
7.
Zurück zum Zitat Zhu WL, Zhu Z, Shi Y, Wang X, Guan K, Ju BF (2016) Design, modeling, analysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning. Smart Mater Struct 25(11):115033CrossRefADS Zhu WL, Zhu Z, Shi Y, Wang X, Guan K, Ju BF (2016) Design, modeling, analysis and testing of a novel piezo-actuated XY compliant mechanism for large workspace nano-positioning. Smart Mater Struct 25(11):115033CrossRefADS
8.
Zurück zum Zitat Turkkan OA, Su HJ (2017) A general and efficient multiple segment method for kinetostatic analysis of planar compliant mechanisms. Mech Mach Theory 112:205–217CrossRef Turkkan OA, Su HJ (2017) A general and efficient multiple segment method for kinetostatic analysis of planar compliant mechanisms. Mech Mach Theory 112:205–217CrossRef
9.
Zurück zum Zitat Kaminakis NT, Stavroulakis GE (2012) Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials. Compos Part B Eng 43(6):2655–2668CrossRef Kaminakis NT, Stavroulakis GE (2012) Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials. Compos Part B Eng 43(6):2655–2668CrossRef
10.
Zurück zum Zitat Ivanov I, Corves B (2014) Stiffness-oriented design of a flexure hinge-based parallel manipulator. Mech Based Des Struct Mach 42(3):326–342CrossRef Ivanov I, Corves B (2014) Stiffness-oriented design of a flexure hinge-based parallel manipulator. Mech Based Des Struct Mach 42(3):326–342CrossRef
11.
Zurück zum Zitat Hawks JC, Colton MB, Howell LL (2015) A variable-stiffness straight-line compliant mechanism. In: International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), ASME, V05AT08A011 Hawks JC, Colton MB, Howell LL (2015) A variable-stiffness straight-line compliant mechanism. In: International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), ASME, V05AT08A011
12.
Zurück zum Zitat Ayoubi Y, Laribi MA, Courrèges F, Zeghloul S, Arsicault M (2016) A complete methodology to design a safety mechanism for prismatic joint implementation. In: International Conference on Intelligent Robots and Systems (IROS), RSJ/IEEE, pp 304–309 Ayoubi Y, Laribi MA, Courrèges F, Zeghloul S, Arsicault M (2016) A complete methodology to design a safety mechanism for prismatic joint implementation. In: International Conference on Intelligent Robots and Systems (IROS), RSJ/IEEE, pp 304–309
13.
Zurück zum Zitat Berselli G, Meng Q, Vertechy R, Parenti Castelli V (2016) An improved design method for the dimensional synthesis of flexure-based compliant mechanisms: optimization procedure and experimental validation. Meccanica 51(5):1209–1225MathSciNetCrossRefMATH Berselli G, Meng Q, Vertechy R, Parenti Castelli V (2016) An improved design method for the dimensional synthesis of flexure-based compliant mechanisms: optimization procedure and experimental validation. Meccanica 51(5):1209–1225MathSciNetCrossRefMATH
14.
Zurück zum Zitat Chen G, Chang H, Li G (2016) Design of constant-force compliant Sarrus mechanism considering stiffness nonlinearity of compliant joints. In: Advances in Reconfigurable Mechanisms and Robots II. Springer, Cham, pp 107–116 Chen G, Chang H, Li G (2016) Design of constant-force compliant Sarrus mechanism considering stiffness nonlinearity of compliant joints. In: Advances in Reconfigurable Mechanisms and Robots II. Springer, Cham, pp 107–116
15.
Zurück zum Zitat Hongzhe Z, Dong H, Lei Z, Shusheng B (2017) Design of a stiffness-adjustable compliant linear-motion mechanism. Precis Eng 48:305–314CrossRef Hongzhe Z, Dong H, Lei Z, Shusheng B (2017) Design of a stiffness-adjustable compliant linear-motion mechanism. Precis Eng 48:305–314CrossRef
16.
Zurück zum Zitat Marković K, Zelenika S (2017) Optimized cross-spring pivot configurations with minimized parasitic shifts and stiffness variations investigated via nonlinear FEA. Mech Based Des Struct Mach 45(3):1–15 Marković K, Zelenika S (2017) Optimized cross-spring pivot configurations with minimized parasitic shifts and stiffness variations investigated via nonlinear FEA. Mech Based Des Struct Mach 45(3):1–15
17.
Zurück zum Zitat Hao G (2016) Mobility and structure re-configurability of compliant mechanisms. In: Advances in Reconfigurable Mechanisms and Robots II. Springer, Cham, pp 49–60 Hao G (2016) Mobility and structure re-configurability of compliant mechanisms. In: Advances in Reconfigurable Mechanisms and Robots II. Springer, Cham, pp 49–60
18.
Zurück zum Zitat Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G et al (2013) Variable impedance actuators: a review. Robot Auton Syst 61(12):1601–1614CrossRef Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G et al (2013) Variable impedance actuators: a review. Robot Auton Syst 61(12):1601–1614CrossRef
19.
Zurück zum Zitat Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106CrossRef Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106CrossRef
20.
Zurück zum Zitat Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge
21.
Zurück zum Zitat Lagoudas DC (2010) Shape memory alloys: modeling and engineering applications. Springer, New-York Lagoudas DC (2010) Shape memory alloys: modeling and engineering applications. Springer, New-York
22.
23.
Zurück zum Zitat Doroudchi A, Zakerzadeh MR, Baghani M (2018) Developing a fast response SMA-actuated rotary actuator: modeling and experimental validation. Meccanica 53(1–2):305–317 Doroudchi A, Zakerzadeh MR, Baghani M (2018) Developing a fast response SMA-actuated rotary actuator: modeling and experimental validation. Meccanica 53(1–2):305–317
24.
Zurück zum Zitat Sreekumar M, Nagarajan T, Singaperumal M (2009) Application of trained NiTi SMA actuators in a spatial compliant mechanism: experimental investigations. Mater Des 30(8):3020–3029CrossRef Sreekumar M, Nagarajan T, Singaperumal M (2009) Application of trained NiTi SMA actuators in a spatial compliant mechanism: experimental investigations. Mater Des 30(8):3020–3029CrossRef
25.
Zurück zum Zitat Zakerzadeh MR, Salehi H, Sayyaadi H (2011) Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators. J Intell Mater Syst Struct 22(11):1249–1268CrossRef Zakerzadeh MR, Salehi H, Sayyaadi H (2011) Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators. J Intell Mater Syst Struct 22(11):1249–1268CrossRef
26.
Zurück zum Zitat Qiu C, Zhang K, Dai JS (2014) Constraint-based design and analysis of a compliant parallel mechanism using SMA-spring actuators. In: International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), ASME, V05AT08A035 Qiu C, Zhang K, Dai JS (2014) Constraint-based design and analysis of a compliant parallel mechanism using SMA-spring actuators. In: International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), ASME, V05AT08A035
27.
Zurück zum Zitat Fortini A, Suman A, Merlin M, Garagnani GL (2015) Morphing blades with embedded SMA strips: an experimental investigation. Mater Des 85:785–795CrossRef Fortini A, Suman A, Merlin M, Garagnani GL (2015) Morphing blades with embedded SMA strips: an experimental investigation. Mater Des 85:785–795CrossRef
28.
Zurück zum Zitat Jovanova J, Frecker M, Hamilton RF, Palmer TA (2016) Target shape optimization of functionally graded shape memory alloy compliant mechanism. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), ASME, V002T03A006 Jovanova J, Frecker M, Hamilton RF, Palmer TA (2016) Target shape optimization of functionally graded shape memory alloy compliant mechanism. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), ASME, V002T03A006
29.
Zurück zum Zitat Mammano GS, Dragoni E (2015) Modelling, simulation and characterization of a linear shape memory actuator with compliant bow-like architecture. J Intell Mater Syst Struct 26(6):718–729CrossRef Mammano GS, Dragoni E (2015) Modelling, simulation and characterization of a linear shape memory actuator with compliant bow-like architecture. J Intell Mater Syst Struct 26(6):718–729CrossRef
30.
Zurück zum Zitat Kim M, Shin YJ, Lee JY, Chu WS, Ahn SH (2017) Pulse width modulation as energy-saving strategy of shape memory alloy based smart soft composite actuator. Int J Precis Eng Manuf 18(6):895–901CrossRef Kim M, Shin YJ, Lee JY, Chu WS, Ahn SH (2017) Pulse width modulation as energy-saving strategy of shape memory alloy based smart soft composite actuator. Int J Precis Eng Manuf 18(6):895–901CrossRef
31.
Zurück zum Zitat Rodrigue H, Wang W, Han MW, Kim TJ, Ahn SH (2017) An overview of shape memory alloy-coupled actuators and robots. Soft Robot 4(1):3–15CrossRef Rodrigue H, Wang W, Han MW, Kim TJ, Ahn SH (2017) An overview of shape memory alloy-coupled actuators and robots. Soft Robot 4(1):3–15CrossRef
32.
Zurück zum Zitat Yuan H, Fauroux JC, Chapelle F, Balandraud X (2017) A review of rotary actuators based on shape memory alloys. J Intell Mater Syst Struct 28(14):1863–1885CrossRef Yuan H, Fauroux JC, Chapelle F, Balandraud X (2017) A review of rotary actuators based on shape memory alloys. J Intell Mater Syst Struct 28(14):1863–1885CrossRef
33.
Zurück zum Zitat Yuan H, Chapelle F, Fauroux JC, Balandraud X (2018) Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy. Smart Mater Struct 27(5):055005CrossRefADS Yuan H, Chapelle F, Fauroux JC, Balandraud X (2018) Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy. Smart Mater Struct 27(5):055005CrossRefADS
34.
Zurück zum Zitat Szewczyk J, Marchandise E, Flaud P, Royon L, Blanc R (2011) Active catheters for neuroradiology. J Robot Mechatron 23(1):105–115CrossRef Szewczyk J, Marchandise E, Flaud P, Royon L, Blanc R (2011) Active catheters for neuroradiology. J Robot Mechatron 23(1):105–115CrossRef
35.
Zurück zum Zitat Koh JS, Lee DY, Cho KJ (2012) Design of the shape memory alloy coil spring actuator for the soft deformable wheel robot. In: International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), KROS/IEEE, pp 641–642 Koh JS, Lee DY, Cho KJ (2012) Design of the shape memory alloy coil spring actuator for the soft deformable wheel robot. In: International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), KROS/IEEE, pp 641–642
36.
Zurück zum Zitat Hadi A, Qasemi M, Elahinia M, Moghaddam NS (2014) Modeling and experiment of a flexible module actuated by shape memory alloy wire. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems, ASME, V001T03A035 Hadi A, Qasemi M, Elahinia M, Moghaddam NS (2014) Modeling and experiment of a flexible module actuated by shape memory alloy wire. In: Conference on Smart Materials, Adaptive Structures and Intelligent Systems, ASME, V001T03A035
37.
Zurück zum Zitat Tonapi MM, Godage IS, Walker ID (2014) Next generation rope-like robot for in-space inspection. In: Aerospace Conference, IEEE, pp 1–13 Tonapi MM, Godage IS, Walker ID (2014) Next generation rope-like robot for in-space inspection. In: Aerospace Conference, IEEE, pp 1–13
38.
Zurück zum Zitat Singh P, Ananthasuresh GK (2013) A compact and compliant external pipe-crawling robot. IEEE Trans Robot 29(1):251–260CrossRef Singh P, Ananthasuresh GK (2013) A compact and compliant external pipe-crawling robot. IEEE Trans Robot 29(1):251–260CrossRef
39.
Zurück zum Zitat Bharanidaran R, Ramesh T (2014) Numerical simulation and experimental investigation of a topologically optimized compliant microgripper. Sens Actuators Phys 205:156–163CrossRef Bharanidaran R, Ramesh T (2014) Numerical simulation and experimental investigation of a topologically optimized compliant microgripper. Sens Actuators Phys 205:156–163CrossRef
40.
Zurück zum Zitat Engeberg ED, Dilibal S, Vatani M, Choi JW, Lavery J (2015) Anthropomorphic finger antagonistically actuated by SMA plates. Bioinspir Biomim 10(5):056002CrossRefADS Engeberg ED, Dilibal S, Vatani M, Choi JW, Lavery J (2015) Anthropomorphic finger antagonistically actuated by SMA plates. Bioinspir Biomim 10(5):056002CrossRefADS
41.
Zurück zum Zitat She Y, Li C, Cleary J, Su HJ (2015) Design and fabrication of a soft robotic hand with embedded actuators and sensors. J Mech Robot 7(2):021007–021009CrossRef She Y, Li C, Cleary J, Su HJ (2015) Design and fabrication of a soft robotic hand with embedded actuators and sensors. J Mech Robot 7(2):021007–021009CrossRef
42.
Zurück zum Zitat Li J, Zu L, Zhong G, He M, Yin H, Tan Y (2017) Stiffness characteristics of soft finger with embedded SMA fibers. Compos Struct 160:758–764CrossRef Li J, Zu L, Zhong G, He M, Yin H, Tan Y (2017) Stiffness characteristics of soft finger with embedded SMA fibers. Compos Struct 160:758–764CrossRef
43.
Zurück zum Zitat Shivaram AC, Thakare AG, Buravalla VR, Suryanarayan S (2012) Stiffness control using smart actuators. U.S. Patent 8,313,108 Shivaram AC, Thakare AG, Buravalla VR, Suryanarayan S (2012) Stiffness control using smart actuators. U.S. Patent 8,313,108
44.
Zurück zum Zitat Brailovski V, Facchinello Y, Brummund M, Petit Y, Mac-Thiong JM (2016) Ti–Ni rods with variable stiffness for spine stabilization: manufacture and biomechanical evaluation. Shape Mem Superelast 2(1):3–11CrossRefADS Brailovski V, Facchinello Y, Brummund M, Petit Y, Mac-Thiong JM (2016) Ti–Ni rods with variable stiffness for spine stabilization: manufacture and biomechanical evaluation. Shape Mem Superelast 2(1):3–11CrossRefADS
45.
Zurück zum Zitat Heinonen J, Vessonen I, Klinge P, Järvinen E (2008) Controlling stiffness of a frame spring by changing the boundary condition with an SMA actuator. Comput Struct 86(3):398–406CrossRef Heinonen J, Vessonen I, Klinge P, Järvinen E (2008) Controlling stiffness of a frame spring by changing the boundary condition with an SMA actuator. Comput Struct 86(3):398–406CrossRef
46.
Zurück zum Zitat Dieng L, Helbert G, Chirani SA, Lecompte T, Pilvin P (2013) Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables. Eng Struct 56:1547–1556CrossRef Dieng L, Helbert G, Chirani SA, Lecompte T, Pilvin P (2013) Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables. Eng Struct 56:1547–1556CrossRef
47.
Zurück zum Zitat Henry CP (2013) Variable stiffness joint mechanism. U.S. Patent 8,475,074 Henry CP (2013) Variable stiffness joint mechanism. U.S. Patent 8,475,074
48.
Zurück zum Zitat Naselli GA, Rimassa L, Zoppi M, Molfino R (2017) A variable stiffness joint with superelastic material. Meccanica 52(4–5):781–793MathSciNetCrossRefMATH Naselli GA, Rimassa L, Zoppi M, Molfino R (2017) A variable stiffness joint with superelastic material. Meccanica 52(4–5):781–793MathSciNetCrossRefMATH
49.
Zurück zum Zitat Gao X, Burton D, Turner TL, Brinson LC (2006) Finite element analysis of adaptive-stiffening and shape-control SMA hybrid composites. J Eng Mater Technol 128(3):285–293CrossRef Gao X, Burton D, Turner TL, Brinson LC (2006) Finite element analysis of adaptive-stiffening and shape-control SMA hybrid composites. J Eng Mater Technol 128(3):285–293CrossRef
50.
Zurück zum Zitat Chenal TP, Case JC, Paik J, Kramer RK (2014) Variable stiffness fabrics with embedded shape memory materials for wearable applications. In: International Conference on Intelligent Robots and Systems (IROS), RSJ/IEEE, pp 2827–2831 Chenal TP, Case JC, Paik J, Kramer RK (2014) Variable stiffness fabrics with embedded shape memory materials for wearable applications. In: International Conference on Intelligent Robots and Systems (IROS), RSJ/IEEE, pp 2827–2831
51.
Zurück zum Zitat Yuen MC, Bilodeau RA, Kramer RK (2016) Active variable stiffness fibers for multifunctional robotic fabrics. IEEE Robot Autom Lett 1(2):708–715CrossRef Yuen MC, Bilodeau RA, Kramer RK (2016) Active variable stiffness fibers for multifunctional robotic fabrics. IEEE Robot Autom Lett 1(2):708–715CrossRef
52.
Zurück zum Zitat Ransley M, Smitham P, Miodownik M (2017) Active chainmail fabrics for soft robotic applications. Smart Mater Struct 26:08LT02CrossRef Ransley M, Smitham P, Miodownik M (2017) Active chainmail fabrics for soft robotic applications. Smart Mater Struct 26:08LT02CrossRef
53.
Zurück zum Zitat Mekaouche A, Chapelle F, Balandraud X (2016) Using shape memory alloys to obtain variable compliance maps of a flexible structure: concept and modeling. Meccanica 51(6):1287–1299CrossRef Mekaouche A, Chapelle F, Balandraud X (2016) Using shape memory alloys to obtain variable compliance maps of a flexible structure: concept and modeling. Meccanica 51(6):1287–1299CrossRef
54.
Zurück zum Zitat Rizk R, Fauroux JC, Mumteanu M, Gogu G (2006) A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility. J Mach Eng 6(2):45–55 Rizk R, Fauroux JC, Mumteanu M, Gogu G (2006) A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility. J Mach Eng 6(2):45–55
55.
Zurück zum Zitat Bonnemains T, Chanal H, Bouzgarrou BC, Ray P (2009) Stiffness computation and identification of parallel kinematic machine tools. J Manuf Sci Eng 131(4):041013CrossRef Bonnemains T, Chanal H, Bouzgarrou BC, Ray P (2009) Stiffness computation and identification of parallel kinematic machine tools. J Manuf Sci Eng 131(4):041013CrossRef
56.
Zurück zum Zitat Zhang J, Zhao Y, Dai J (2014) Compliance modeling and analysis of a 3-RPS parallel kinematic machine module. Chin J Mech Eng 27(4):703–713CrossRef Zhang J, Zhao Y, Dai J (2014) Compliance modeling and analysis of a 3-RPS parallel kinematic machine module. Chin J Mech Eng 27(4):703–713CrossRef
57.
Zurück zum Zitat Nguyen AV, Bouzgarrou BC, Charlet K, Béakou A (2015) Static and dynamic characterization of the 6-Dofs parallel robot 3CRS. Mech Mach Theory 93:65–82CrossRef Nguyen AV, Bouzgarrou BC, Charlet K, Béakou A (2015) Static and dynamic characterization of the 6-Dofs parallel robot 3CRS. Mech Mach Theory 93:65–82CrossRef
58.
Zurück zum Zitat Mekaouche A, Chapelle F, Balandraud X (2016) Identification of material and joint properties based on the 3D mapping of the Quattro static stiffness. In: Research in interactive design (vol 4): mechanics, design engineering and advanced manufacturing. Springer, pp 579–584 Mekaouche A, Chapelle F, Balandraud X (2016) Identification of material and joint properties based on the 3D mapping of the Quattro static stiffness. In: Research in interactive design (vol 4): mechanics, design engineering and advanced manufacturing. Springer, pp 579–584
59.
Zurück zum Zitat Mekaouche A, Chapelle F, Balandraud X (2015) FEM-based generation of stiffness maps. IEEE Trans Robot 31(1):217–222CrossRef Mekaouche A, Chapelle F, Balandraud X (2015) FEM-based generation of stiffness maps. IEEE Trans Robot 31(1):217–222CrossRef
Metadaten
Titel
A compliant mechanism with variable stiffness achieved by rotary actuators and shape-memory alloy
verfasst von
Adel Mekaouche
Frédéric Chapelle
Xavier Balandraud
Publikationsdatum
29.03.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 10/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0844-0

Weitere Artikel der Ausgabe 10/2018

Meccanica 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.