Skip to main content
Erschienen in: Journal of Electronic Materials 7/2021

30.04.2021 | Original Research Article

A Composite Mesh of N-doped Carbon/Polyaniline Nanowire Arrays for a Flexible Self-Supporting Interdigital Solid Supercapacitor

verfasst von: Qingyuan Niu, Zixin Feng, Kezheng Gao, Qiheng Tang, Xiankai Sun, Lizhen Wang

Erschienen in: Journal of Electronic Materials | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The carbon-based flexible solid supercapacitor has great potential applications in wearable electronics due to its excellent flexibility, knitability and tailorable performance. However, the low energy density of the flexible carbon-based flexible solid supercapacitor has become a major bottleneck for their wide application in the future. In this article, composite meshes of N-doped carbon/polyaniline (PANI) nanowire arrays (NCPA) have been fabricated successfully by using dilute polymerization. The PANI nanowire array coating decorated on the N-doped carbon mesh is crucial for the improvement of electrochemical performance. This unique micromorphology not only increases the specific surface area, but also facilitates electrolyte ion diffusion, effectively buffering the volume expansion of the PANI nanowire array and increasing the utilization of the PANI nanowire array. The sheet resistance of the NCPA mesh electrode materials is about 20 Ω/sq. The maximum area specific capacitance for the NCPA-0.5 mesh based flexible self-supporting interdigital solid supercapacitor is about 7.7 mF cm−2 at a current density of 5 μA cm−2. The NCPA-0.5 mesh based flexible self-supporting interdigital solid supercapacitor also displays excellent folding endurance. The capacitance retention rate is still as high as 94% after folding 10,000 times.

Graphic Abstract

The N-doped carbon/PANI nanowire array composite mesh based flexible self-supporting interdigital solid supercapacitor exhibit good electrochemical and flexibility performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat C. Choi, M.K. Choi, T. Hyeon, and D.H. Kim, Chemnanomat 2, 1006 (2016).CrossRef C. Choi, M.K. Choi, T. Hyeon, and D.H. Kim, Chemnanomat 2, 1006 (2016).CrossRef
2.
Zurück zum Zitat R. Guo, X.L. Wang, H. Chang, W.Z. Yu, S.T. Liang, W. Rao, and J. Liu, Adv. Eng. Mater. 20, 1800054 (2018).CrossRef R. Guo, X.L. Wang, H. Chang, W.Z. Yu, S.T. Liang, W. Rao, and J. Liu, Adv. Eng. Mater. 20, 1800054 (2018).CrossRef
3.
Zurück zum Zitat D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N.S. Lu, T. Hyeon, and D.H. Kim, Nat. Nanotechnol. 9, 397 (2014).CrossRef D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N.S. Lu, T. Hyeon, and D.H. Kim, Nat. Nanotechnol. 9, 397 (2014).CrossRef
4.
Zurück zum Zitat M.M. Rodgers, V.M. Pai, and R.S. Conroy, IEEE Sens. J. 15, 3119 (2015).CrossRef M.M. Rodgers, V.M. Pai, and R.S. Conroy, IEEE Sens. J. 15, 3119 (2015).CrossRef
5.
Zurück zum Zitat C.A. Winterhalter, J. Teverovsky, P. Wilson, J. Slade, W. Horowitz, E. Tierney, and V. Sharma, IEEE Trans. Inf. Technol. 9, 402 (2005).CrossRef C.A. Winterhalter, J. Teverovsky, P. Wilson, J. Slade, W. Horowitz, E. Tierney, and V. Sharma, IEEE Trans. Inf. Technol. 9, 402 (2005).CrossRef
6.
7.
Zurück zum Zitat R.Z. Hou, G.S. Gund, K. Qi, P. Nakhanivej, H.F. Liu, F. Li, B.Y. Xia, and H.S. Park, Energy Stor. Mater. 19, 212 (2019).CrossRef R.Z. Hou, G.S. Gund, K. Qi, P. Nakhanivej, H.F. Liu, F. Li, B.Y. Xia, and H.S. Park, Energy Stor. Mater. 19, 212 (2019).CrossRef
8.
Zurück zum Zitat Q.Y. Huang, D.R. Wang, and Z.J. Zheng, Adv. Energy Mater. 6, 1600783 (2016).CrossRef Q.Y. Huang, D.R. Wang, and Z.J. Zheng, Adv. Energy Mater. 6, 1600783 (2016).CrossRef
9.
Zurück zum Zitat Z.H. Bi, Q.Q. Kong, Y.F. Cao, G.H. Sun, F.Y. Su, X.X. Wei, X.M. Li, A. Ahmad, L.J. Xie, and C.M. Chen, J. Mater. Chem. A. 7, 16028 (2019).CrossRef Z.H. Bi, Q.Q. Kong, Y.F. Cao, G.H. Sun, F.Y. Su, X.X. Wei, X.M. Li, A. Ahmad, L.J. Xie, and C.M. Chen, J. Mater. Chem. A. 7, 16028 (2019).CrossRef
10.
Zurück zum Zitat M.S. Kim, B. Hsia, C. Carraro, and R. Maboudian, Carbon 74, 163 (2014).CrossRef M.S. Kim, B. Hsia, C. Carraro, and R. Maboudian, Carbon 74, 163 (2014).CrossRef
11.
Zurück zum Zitat Y.M. He, W.J. Chen, C.T. Gao, J.Y. Zhou, X.D. Li, and E.Q. Xie, Nanoscale 5, 8799 (2013).CrossRef Y.M. He, W.J. Chen, C.T. Gao, J.Y. Zhou, X.D. Li, and E.Q. Xie, Nanoscale 5, 8799 (2013).CrossRef
12.
13.
Zurück zum Zitat J. Ren, Y. Huang, He. Zhu, B. Zhang, H. Zhu, S. Shen, G. Tan, Wu. Feng, H. He, Si. Lan, X. Xia, and Qi. Liu, Carbon Energy 2, 176 (2020).CrossRef J. Ren, Y. Huang, He. Zhu, B. Zhang, H. Zhu, S. Shen, G. Tan, Wu. Feng, H. He, Si. Lan, X. Xia, and Qi. Liu, Carbon Energy 2, 176 (2020).CrossRef
14.
Zurück zum Zitat J.B. Wu, R.Q. Guo, X.H. Huang, and Y. Lin, J. Power Sources 243, 317 (2013).CrossRef J.B. Wu, R.Q. Guo, X.H. Huang, and Y. Lin, J. Power Sources 243, 317 (2013).CrossRef
15.
Zurück zum Zitat Q. Xiong, C. Zheng, H. Chi, J. Zhang, and Z. Ji, Nanotechnology 28, 055405 (2017).CrossRef Q. Xiong, C. Zheng, H. Chi, J. Zhang, and Z. Ji, Nanotechnology 28, 055405 (2017).CrossRef
16.
18.
19.
Zurück zum Zitat C.L. Shi, Q. Zhao, H. Li, Z.M. Liao, and D.P. Yu, Nano Energy 6, 82 (2014).CrossRef C.L. Shi, Q. Zhao, H. Li, Z.M. Liao, and D.P. Yu, Nano Energy 6, 82 (2014).CrossRef
20.
Zurück zum Zitat F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater. 26, 2219 (2014).CrossRef F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater. 26, 2219 (2014).CrossRef
21.
Zurück zum Zitat A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef A. Gonzalez, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).CrossRef
22.
Zurück zum Zitat X.D. Bu, L.J. Su, Q.Y. Dou, S.L. Lei, and X.B. Yan, J. Mater. Chem. A 7, 7541 (2019).CrossRef X.D. Bu, L.J. Su, Q.Y. Dou, S.L. Lei, and X.B. Yan, J. Mater. Chem. A 7, 7541 (2019).CrossRef
23.
Zurück zum Zitat Q.Y. Dou, Y.L. Lu, L.J. Su, X. Zhang, S.L. Lei, X.D. Bu, L.Y. Liu, D.W. Xiao, J.T. Chen, S.Q. Shi, and X.B. Yan, Energy Storage Mater. 23, 603 (2019).CrossRef Q.Y. Dou, Y.L. Lu, L.J. Su, X. Zhang, S.L. Lei, X.D. Bu, L.Y. Liu, D.W. Xiao, J.T. Chen, S.Q. Shi, and X.B. Yan, Energy Storage Mater. 23, 603 (2019).CrossRef
24.
Zurück zum Zitat V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).CrossRef V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).CrossRef
25.
26.
27.
28.
Zurück zum Zitat Y.Q. Wang, Y. Ding, X.L. Guo, and G.H. Yu, Nano Res. 12, 1978 (2019).CrossRef Y.Q. Wang, Y. Ding, X.L. Guo, and G.H. Yu, Nano Res. 12, 1978 (2019).CrossRef
29.
Zurück zum Zitat R.A. Green, R.T. Hassarati, L. Bouchinet, C.S. Lee, G.L.M. Cheong, J.F. Yu, C.W. Dodds, G.J. Suaning, L.A. Poole-Warren, and N.H. Lovell, Biomaterials 33, 5875 (2012).CrossRef R.A. Green, R.T. Hassarati, L. Bouchinet, C.S. Lee, G.L.M. Cheong, J.F. Yu, C.W. Dodds, G.J. Suaning, L.A. Poole-Warren, and N.H. Lovell, Biomaterials 33, 5875 (2012).CrossRef
30.
Zurück zum Zitat L.J. Pan, H. Qiu, C.M. Dou, Y. Li, L. Pu, J.B. Xu, and Y. Shi, Int. J. Mol. Sci. 11, 2636 (2010).CrossRef L.J. Pan, H. Qiu, C.M. Dou, Y. Li, L. Pu, J.B. Xu, and Y. Shi, Int. J. Mol. Sci. 11, 2636 (2010).CrossRef
31.
Zurück zum Zitat L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, J. Mater. Chem. A 4, 15006 (2016).CrossRef L.T. Hu, J.X. Hou, Y. Ma, H.Q. Li, and T.Y. Zhai, J. Mater. Chem. A 4, 15006 (2016).CrossRef
32.
33.
Zurück zum Zitat Y.L. Guo, T. Wang, F.H. Chen, X.M. Sun, X.F. Li, Z.Z. Yu, P.B. Wan, and X.D. Chen, Nanoscale 8, 12073 (2016).CrossRef Y.L. Guo, T. Wang, F.H. Chen, X.M. Sun, X.F. Li, Z.Z. Yu, P.B. Wan, and X.D. Chen, Nanoscale 8, 12073 (2016).CrossRef
34.
Zurück zum Zitat J.J. Xu, K. Wang, S.Z. Zu, B.H. Han, and Z.X. Wei, ACS Nano 4, 5019 (2010).CrossRef J.J. Xu, K. Wang, S.Z. Zu, B.H. Han, and Z.X. Wei, ACS Nano 4, 5019 (2010).CrossRef
35.
Zurück zum Zitat S.L. Bai, Y.B. Zhao, J.H. Sun, Y. Tian, R.X. Luo, D.Q. Li, and A.F. Chen, Sci. Rev. Chem. Commun. 51, 7524 (2015).CrossRef S.L. Bai, Y.B. Zhao, J.H. Sun, Y. Tian, R.X. Luo, D.Q. Li, and A.F. Chen, Sci. Rev. Chem. Commun. 51, 7524 (2015).CrossRef
36.
Zurück zum Zitat X.L. Song, J.X. Guo, M.X. Guo, D.Z. Jia, Z.P. Sun, and L.X. Wang, Electrochim. Acta 206, 337 (2016).CrossRef X.L. Song, J.X. Guo, M.X. Guo, D.Z. Jia, Z.P. Sun, and L.X. Wang, Electrochim. Acta 206, 337 (2016).CrossRef
37.
Zurück zum Zitat D.Y. Gui, C.L. Liu, F.Y. Chen, and J.H. Liu, Appl. Surf. Sci. 307, 172 (2014).CrossRef D.Y. Gui, C.L. Liu, F.Y. Chen, and J.H. Liu, Appl. Surf. Sci. 307, 172 (2014).CrossRef
38.
Metadaten
Titel
A Composite Mesh of N-doped Carbon/Polyaniline Nanowire Arrays for a Flexible Self-Supporting Interdigital Solid Supercapacitor
verfasst von
Qingyuan Niu
Zixin Feng
Kezheng Gao
Qiheng Tang
Xiankai Sun
Lizhen Wang
Publikationsdatum
30.04.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 7/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08930-8

Weitere Artikel der Ausgabe 7/2021

Journal of Electronic Materials 7/2021 Zur Ausgabe

Neuer Inhalt