Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

18.05.2018 | Regular Paper | Ausgabe 1/2019 Open Access

Knowledge and Information Systems 1/2019

A comprehensive empirical comparison of hubness reduction in high-dimensional spaces

Zeitschrift:
Knowledge and Information Systems > Ausgabe 1/2019
Autoren:
Roman Feldbauer, Arthur Flexer

Abstract

Hubness is an aspect of the curse of dimensionality related to the distance concentration effect. Hubs occur in high-dimensional data spaces as objects that are particularly often among the nearest neighbors of other objects. Conversely, other data objects become antihubs, which are rarely or never nearest neighbors to other objects. Many machine learning algorithms rely on nearest neighbor search and some form of measuring distances, which are both impaired by high hubness. Degraded performance due to hubness has been reported for various tasks such as classification, clustering, regression, visualization, recommendation, retrieval and outlier detection. Several hubness reduction methods based on different paradigms have previously been developed. Local and global scaling as well as shared neighbors approaches aim at repairing asymmetric neighborhood relations. Global and localized centering try to eliminate spatial centrality, while the related global and local dissimilarity measures are based on density gradient flattening. Additional methods and alternative dissimilarity measures that were argued to mitigate detrimental effects of distance concentration also influence the related hubness phenomenon. In this paper, we present a large-scale empirical evaluation of all available unsupervised hubness reduction methods and dissimilarity measures. We investigate several aspects of hubness reduction as well as its influence on data semantics which we measure via nearest neighbor classification. Scaling and density gradient flattening methods improve evaluation measures such as hubness and classification accuracy consistently for data sets from a wide range of domains, while centering approaches achieve the same only under specific settings.

Unsere Produktempfehlungen

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Knowledge and Information Systems 1/2019 Zur Ausgabe

Premium Partner

    Bildnachweise