Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 2/2015

International Journal on Digital Libraries 2/2015

A comprehensive evaluation of scholarly paper recommendation using potential citation papers

Zeitschrift:
International Journal on Digital Libraries > Ausgabe 2/2015
Autoren:
Kazunari Sugiyama, Min-Yen Kan
Wichtige Hinweise
This is an extended version of our paper, “Exploiting Potential Citation Papers in Scholarly Paper Recommendation” published in proceedings of the 13th ACM/IEEE Joint Conference on Digital Libraries (JCDL 2013), pages 153–162.

Abstract

To help generate relevant suggestions for researchers, recommendation systems have started to leverage the latent interests in the publication profiles of the researchers themselves. While using such a publication citation network has been shown to enhance performance, the network is often sparse, making recommendation difficult. To alleviate this sparsity, in our former work, we identified “potential citation papers” through the use of collaborative filtering. Also, as different logical sections of a paper have different significance, as a secondary contribution, we investigated which sections of papers can be leveraged to represent papers effectively. While this initial approach works well for researchers vested in a single discipline, it generates poor predictions for scientists who work on several different topics in the discipline (hereafter, “intra-disciplinary”). We thus extend our previous work in this paper by proposing an adaptive neighbor selection method to overcome this problem in our imputation-based collaborative filtering framework. On a publicly-available scholarly paper recommendation dataset, we show that recommendation accuracy significantly outperforms state-of-the-art recommendation baselines as measured by nDCG and MRR, when using our adaptive neighbor selection method. While recommendation performance is enhanced for all researchers, improvements are more marked for intra-disciplinary researchers, showing that our method does address the targeted audience.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2015

International Journal on Digital Libraries 2/2015 Zur Ausgabe

Premium Partner

    Bildnachweise