Skip to main content
Erschienen in: Microsystem Technologies 5/2019

01.02.2018 | Technical Paper

A computational study on the quantum transport properties of silicene–graphene nano-composites

Erschienen in: Microsystem Technologies | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene has been conjugated with Silicene which is a 2D nanosheet of silicon crystal to analyze myriad physico-chemical properties. Upon intercalation of silicene between two graphene nanosheets, there has been a significant shift in the energy of electronic configuration at different isovalues from − 0.12 to + 0.12. Similarly, by analyzing the electronic energy states of silicene–graphene–silicene, a range of isovalues from − 0.08 to + 0.08 were observed. I–V curve exhibited a linear response for graphene–silicene–graphene sandwiched structure and a semiconducting like behavior for silicene–graphene–silicene structure. Band gap measurement in case of graphene–silicene–graphene system is reported to be ~ 0.18 eV, which is a narrow region. While in case of silicene–graphene–silicene, a band gap value of ~ 1.01 eV is calculated that appears to be a pretty broad region. Transmission spectrum also shows intensity in peaks for Gr–Si–Gr case as compared to Si–Gr–Si combinations. Silicon is widely perceived to exhibit outstanding semiconducting behavior and has already been used in devising various electronic devices. In this present work, we try to analyze the outcome of the silicene and graphene at the nanometer scale in various combinations in a bid to understand the potential interaction mechanism between the two nanosheets which would help in the fabrication of the silicene–graphene based optoelectronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Moraru D, Muruganathan M, Nuryadi R, Mizuta H, Tabe M (2017) Inter-band current enhancement by dopant-atoms in low-dimensional pn tunnel diodes. In: Jablonski R, Szewczyk R (eds) Recent global research and education: technological challenges. Springer International Publishing, Switzerland, pp 95–101. https://doi.org/10.1007/978-3-319-46490-9_14 CrossRef Moraru D, Muruganathan M, Nuryadi R, Mizuta H, Tabe M (2017) Inter-band current enhancement by dopant-atoms in low-dimensional pn tunnel diodes. In: Jablonski R, Szewczyk R (eds) Recent global research and education: technological challenges. Springer International Publishing, Switzerland, pp 95–101. https://​doi.​org/​10.​1007/​978-3-319-46490-9_​14 CrossRef
Zurück zum Zitat Shubnyi VO, Sharapov SG (2017) Density of states of Dirac–Landau levels in a gapped graphene monolayer under strain gradient. arXiv preprint arXiv:1701:06769 Shubnyi VO, Sharapov SG (2017) Density of states of Dirac–Landau levels in a gapped graphene monolayer under strain gradient. arXiv preprint arXiv:1701:06769
Zurück zum Zitat Uchida K, Koga J, Ohba R, Numata T, Takagi SI (2001) Experimental evidences of quantum-mechanical effects on low-field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs. In: Electron devices meeting, 2001. IEDM’01. Technical digest. International. IEEE, p 29-4. https://doi.org/10.1109/iedm.2001.979588 Uchida K, Koga J, Ohba R, Numata T, Takagi SI (2001) Experimental evidences of quantum-mechanical effects on low-field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs. In: Electron devices meeting, 2001. IEDM’01. Technical digest. International. IEEE, p 29-4. https://​doi.​org/​10.​1109/​iedm.​2001.​979588
Metadaten
Titel
A computational study on the quantum transport properties of silicene–graphene nano-composites
Publikationsdatum
01.02.2018
Erschienen in
Microsystem Technologies / Ausgabe 5/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3726-4

Weitere Artikel der Ausgabe 5/2019

Microsystem Technologies 5/2019 Zur Ausgabe

Neuer Inhalt