Skip to main content
Erschienen in: Computational Mechanics 4/2019

21.02.2019 | Original Paper

A concise frictional contact formulation based on surface potentials and isogeometric discretization

verfasst von: Thang X. Duong, Roger A. Sauer

Erschienen in: Computational Mechanics | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a concise theoretical and computational framework for the finite element formulation of frictional contact problems with arbitrarily large deformation and sliding. The aim of this work is to extend the contact theory based on surface potentials (Sauer and De Lorenzis in Comput Methods Appl Mech Eng 253:369–395, 2013) to account for friction. Coulomb friction under isothermal conditions is considered here. For a consistent friction formulation, we start with the first and second laws of thermodynamics and derive the governing equations at the contact interface. A so-called interacting gap can then be defined as a kinematic variable unifying both sliding/sticking and normal/tangential contact. A variational principle for the frictional system can then be formulated based on a purely kinematical constraint. The direct elimination approach applied to the tangential part of this constraint leads to the so-called moving friction cone approach of Wriggers and Haraldsson (Commun Numer Methods Eng 19:285–295, 2003). Compared with existing friction formulations, our approach reduces the theoretical and computational complexity. Several numerical examples are presented to demonstrate the accuracy and robustness of the proposed friction formulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Computed by averaging the tangential contact traction over the reference surface.
 
2
i.e the resultant of the contact force and the surface force due to the volume constraint.
 
Literatur
1.
Zurück zum Zitat Argento C, Jagota A, Carter WC (1997) Surface formulation for molecular interactions of macroscopic bodies. J Mech Phys Solids 45(7):1161–1183MathSciNetCrossRef Argento C, Jagota A, Carter WC (1997) Surface formulation for molecular interactions of macroscopic bodies. J Mech Phys Solids 45(7):1161–1183MathSciNetCrossRef
2.
Zurück zum Zitat Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on bezier extraction of NURBS. Int J Numer Methods Eng 87:15–47CrossRefMATH Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on bezier extraction of NURBS. Int J Numer Methods Eng 87:15–47CrossRefMATH
3.
Zurück zum Zitat Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Isogeometric mortar methods. Comput Methods Appl Mech Eng 284(Supplement C):292–319MathSciNetCrossRefMATH Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Isogeometric mortar methods. Comput Methods Appl Mech Eng 284(Supplement C):292–319MathSciNetCrossRefMATH
5.
Zurück zum Zitat Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for mixed-mode contact and debonding. Comput Methods Appl Mech Eng 284:781–806CrossRefMATH Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for mixed-mode contact and debonding. Comput Methods Appl Mech Eng 284:781–806CrossRefMATH
7.
Zurück zum Zitat De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300MathSciNetMATH De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300MathSciNetMATH
8.
Zurück zum Zitat De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20MathSciNetCrossRefMATH De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20MathSciNetCrossRefMATH
9.
Zurück zum Zitat Del Piero G, Raous M (2010) A unified model for adhesive interfaces with damage, viscosity, and friction. Eur J Mech A Solid 29:496–507MathSciNetCrossRef Del Piero G, Raous M (2010) A unified model for adhesive interfaces with damage, viscosity, and friction. Eur J Mech A Solid 29:496–507MathSciNetCrossRef
10.
Zurück zum Zitat Dimitri R, Zavarise G (2017) Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech 60(2):315–332MathSciNetCrossRefMATH Dimitri R, Zavarise G (2017) Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech 60(2):315–332MathSciNetCrossRefMATH
11.
Zurück zum Zitat Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical mortar contact problems. Comput Methods Appl Mech Eng 274:192–212MathSciNetCrossRefMATH Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical mortar contact problems. Comput Methods Appl Mech Eng 274:192–212MathSciNetCrossRefMATH
13.
Zurück zum Zitat Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195:5020–5036MathSciNetCrossRefMATH Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195:5020–5036MathSciNetCrossRefMATH
14.
Zurück zum Zitat Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetMATH Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetMATH
15.
Zurück zum Zitat Hiermeier M, Wall WA, Popp A (2018) A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanics. Comput Methods Appl Mech Eng 342:532–540MathSciNetCrossRef Hiermeier M, Wall WA, Popp A (2018) A truly variationally consistent and symmetric mortar-based contact formulation for finite deformation solid mechanics. Comput Methods Appl Mech Eng 342:532–540MathSciNetCrossRef
16.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH
17.
Zurück zum Zitat Khiêm VN, Itskov M (2017) An averaging based tube model for deformation induced anisotropic stress softening of filled elastomers. Int J Plast 90:96–115CrossRef Khiêm VN, Itskov M (2017) An averaging based tube model for deformation induced anisotropic stress softening of filled elastomers. Int J Plast 90:96–115CrossRef
18.
Zurück zum Zitat Kiliç K, Temizer I (2016) Tuning macroscopic sliding friction at soft contact interfaces: interaction of bulk and surface heterogeneities. Tribol Int 104:83–97CrossRef Kiliç K, Temizer I (2016) Tuning macroscopic sliding friction at soft contact interfaces: interaction of bulk and surface heterogeneities. Tribol Int 104:83–97CrossRef
19.
20.
Zurück zum Zitat Krstulovic-Opara L, Wriggers P, Korelc J (2002) A \(C^1\)-continuous formulation for 3D finite deformation friction contact. Comput Mech 29:27–42MathSciNetCrossRefMATH Krstulovic-Opara L, Wriggers P, Korelc J (2002) A \(C^1\)-continuous formulation for 3D finite deformation friction contact. Comput Mech 29:27–42MathSciNetCrossRefMATH
21.
Zurück zum Zitat Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinMATH Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinMATH
22.
Zurück zum Zitat Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int J Numer Methods Eng 36:3451–3485MathSciNetCrossRefMATH Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems. Int J Numer Methods Eng 36:3451–3485MathSciNetCrossRefMATH
23.
Zurück zum Zitat Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–741MathSciNetCrossRefMATH Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–741MathSciNetCrossRefMATH
24.
Zurück zum Zitat Mergel JC, Sahli R, Scheibert J, Sauer RA (2018) Continuum contact models for coupled adhesion and friction. J Adhes 94:1–33CrossRef Mergel JC, Sahli R, Scheibert J, Sauer RA (2018) Continuum contact models for coupled adhesion and friction. J Adhes 94:1–33CrossRef
25.
Zurück zum Zitat Neto D, Oliveira M, Menezes L, Alves J (2016) A contact smoothing method for arbitrary surface meshes using Nagata patches. Comput Methods Appl Mech Eng 299:283–315MathSciNetCrossRefMATH Neto D, Oliveira M, Menezes L, Alves J (2016) A contact smoothing method for arbitrary surface meshes using Nagata patches. Comput Methods Appl Mech Eng 299:283–315MathSciNetCrossRefMATH
26.
Zurück zum Zitat Ogden RW (1987) Non-linear elastic deformations. Dover Edition, Mineola Ogden RW (1987) Non-linear elastic deformations. Dover Edition, Mineola
27.
Zurück zum Zitat Persson BNJ (2000) Sliding friction: physical principles and application, 2nd edn. Springer, BerlinCrossRefMATH Persson BNJ (2000) Sliding friction: physical principles and application, 2nd edn. Springer, BerlinCrossRefMATH
28.
Zurück zum Zitat Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34:B421–B446MathSciNetCrossRefMATH Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34:B421–B446MathSciNetCrossRefMATH
29.
Zurück zum Zitat Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629CrossRefMATH Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629CrossRefMATH
30.
Zurück zum Zitat Raous M, Cangémi L, Cocu M (1999) A consistent model coupling adhesion, friction, and unilateral contact. Comput Methods Appl Mech Eng 177:383–399MathSciNetCrossRefMATH Raous M, Cangémi L, Cocu M (1999) A consistent model coupling adhesion, friction, and unilateral contact. Comput Methods Appl Mech Eng 177:383–399MathSciNetCrossRefMATH
31.
Zurück zum Zitat Sauer RA (2006) An atomic interaction based continuum model for computational multiscale contact mechanics. Ph.D. thesis, University of California, Berkeley, USA Sauer RA (2006) An atomic interaction based continuum model for computational multiscale contact mechanics. Ph.D. thesis, University of California, Berkeley, USA
32.
33.
Zurück zum Zitat Sauer RA (2013) Local finite element enrichment strategies for 2D contact computations and a corresponding postprocessing scheme. Comput Mech 52(2):301–319MathSciNetCrossRefMATH Sauer RA (2013) Local finite element enrichment strategies for 2D contact computations and a corresponding postprocessing scheme. Comput Mech 52(2):301–319MathSciNetCrossRefMATH
34.
Zurück zum Zitat Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395MathSciNetCrossRefMATH Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395MathSciNetCrossRefMATH
35.
Zurück zum Zitat Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101:251–280MathSciNetCrossRefMATH Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101:251–280MathSciNetCrossRefMATH
36.
Zurück zum Zitat Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68MathSciNetCrossRefMATH Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68MathSciNetCrossRefMATH
37.
Zurück zum Zitat Sauer RA, Li S (2007) An atomic interaction-based continuum model for adhesive contact mechanics. Finite Elem Anal Des 43(5):384–396MathSciNetCrossRef Sauer RA, Li S (2007) An atomic interaction-based continuum model for adhesive contact mechanics. Finite Elem Anal Des 43(5):384–396MathSciNetCrossRef
38.
Zurück zum Zitat Sauer RA, Li S (2008) An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling. J Nanosci Nanotech 8(7):3757–3773CrossRef Sauer RA, Li S (2008) An atomistically enriched continuum model for nanoscale contact mechanics and its application to contact scaling. J Nanosci Nanotech 8(7):3757–3773CrossRef
39.
Zurück zum Zitat Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A (2016) Isogeometric dual mortar methods for computational contact mechanics. Comput Methods Appl Mech Eng 301:259–280MathSciNetCrossRefMATH Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A (2016) Isogeometric dual mortar methods for computational contact mechanics. Comput Methods Appl Mech Eng 301:259–280MathSciNetCrossRefMATH
40.
Zurück zum Zitat Shadowitz A (1988) The electromagnetic field. Dover Publications, New York Shadowitz A (1988) The electromagnetic field. Dover Publications, New York
41.
Zurück zum Zitat Simo J, Ju J (1987) Strain- and stress-based continuum damage models-I. Formulation. Int J Solids Struct 23(7):821–840CrossRefMATH Simo J, Ju J (1987) Strain- and stress-based continuum damage models-I. Formulation. Int J Solids Struct 23(7):821–840CrossRefMATH
42.
43.
Zurück zum Zitat Temizer I (2016) Sliding friction across the scales: thermomechanical interactions and dissipation partitioning. J Mech Phys Solids 89:126–148MathSciNetCrossRef Temizer I (2016) Sliding friction across the scales: thermomechanical interactions and dissipation partitioning. J Mech Phys Solids 89:126–148MathSciNetCrossRef
44.
Zurück zum Zitat Temizer I, Wriggers P, Hughes T (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112MathSciNetCrossRefMATH Temizer I, Wriggers P, Hughes T (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112MathSciNetCrossRefMATH
45.
Zurück zum Zitat Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128MathSciNetCrossRefMATH Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128MathSciNetCrossRefMATH
46.
Zurück zum Zitat Weeger O, Narayanan B, Dunn ML (2018) Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact. Nonlinear Dyn 91(2):1213–1227CrossRef Weeger O, Narayanan B, Dunn ML (2018) Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact. Nonlinear Dyn 91(2):1213–1227CrossRef
47.
48.
Zurück zum Zitat Wriggers P, Haraldsson A (2003) A simple formulation for two-dimensional contact problems using a moving friction cone. Commun Numer Methods Eng 19:285–295MathSciNetCrossRefMATH Wriggers P, Haraldsson A (2003) A simple formulation for two-dimensional contact problems using a moving friction cone. Commun Numer Methods Eng 19:285–295MathSciNetCrossRefMATH
49.
Zurück zum Zitat Wriggers P, Krstulovic-Opara L (2004) The moving friction cone approach for three-dimensional contact simulations. Int J Comput Methods 01(01):105–119CrossRefMATH Wriggers P, Krstulovic-Opara L (2004) The moving friction cone approach for three-dimensional contact simulations. Int J Comput Methods 01(01):105–119CrossRefMATH
50.
Zurück zum Zitat Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183–1225MathSciNetCrossRefMATH Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183–1225MathSciNetCrossRefMATH
Metadaten
Titel
A concise frictional contact formulation based on surface potentials and isogeometric discretization
verfasst von
Thang X. Duong
Roger A. Sauer
Publikationsdatum
21.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01689-0

Weitere Artikel der Ausgabe 4/2019

Computational Mechanics 4/2019 Zur Ausgabe

Neuer Inhalt