Skip to main content
Erschienen in: Journal of Computational Electronics 1/2014

01.03.2014

A conservative finite difference scheme for Poisson–Nernst–Planck equations

verfasst von: Allen Flavell, Michael Machen, Bob Eisenberg, Julienne Kabre, Chun Liu, Xiaofan Li

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A macroscopic model to describe the dynamics of ion transport in ion channels is the Poisson–Nernst–Planck (PNP) equations. In this paper, we develop a finite-difference method for solving PNP equations, second-order accurate in both space and time. We use the physical parameters specifically suited toward the modeling of ion channels. We present a simple iterative scheme to solve the system of nonlinear equations resulting from discretizing the equations implicitly in time, which is demonstrated to converge in a few iterations. We place emphasis on ensuring numerical methods to have the same physical properties that the PNP equations themselves also possess, namely conservation of total ions, correct rates of energy dissipation, and positivity of the ion concentrations. We describe in detail an approach to derive a finite-difference method that preserves the total concentration of ions exactly in time. In addition, we find a set of sufficient conditions on the step sizes of the numerical method that assure positivity of the ion concentrations. Further, we illustrate that, using realistic values of the physical parameters, the conservation property is critical in obtaining correct numerical solutions over long time scales.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bank, R.E., Coughran, W.M. Jr., Fichtner, W., Grosse, E.H., Rose, D.J., Smith, R.K.: Transient simulation of silicon devices and circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-4, 436–451 (1985) CrossRef Bank, R.E., Coughran, W.M. Jr., Fichtner, W., Grosse, E.H., Rose, D.J., Smith, R.K.: Transient simulation of silicon devices and circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. CAD-4, 436–451 (1985) CrossRef
2.
Zurück zum Zitat Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. Modél. Math. Anal. Numér. 12(3), 237–245 (1978) MATHMathSciNet Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d’évolution paraboliques. Modél. Math. Anal. Numér. 12(3), 237–245 (1978) MATHMathSciNet
3.
Zurück zum Zitat Cagni, E., Remondini, D., Mesirca, P., Castellani, G., Verondini, E., Bersani, F.: Effects of exogenous electromagnetic fields on a simplified ion channel model. J. Biol. Phys. 33, 183–194 (2007) CrossRef Cagni, E., Remondini, D., Mesirca, P., Castellani, G., Verondini, E., Bersani, F.: Effects of exogenous electromagnetic fields on a simplified ion channel model. J. Biol. Phys. 33, 183–194 (2007) CrossRef
4.
Zurück zum Zitat Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical pdes using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012) CrossRefMathSciNet Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical pdes using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012) CrossRefMathSciNet
5.
Zurück zum Zitat Chiu, E., Wang, Q., Hu, R., Jameson, A.: A conservative mesh-free scheme and generalized framework for conservation laws. SIAM J. Sci. Comput. 34, A2896–A2916 (2012) CrossRefMATHMathSciNet Chiu, E., Wang, Q., Hu, R., Jameson, A.: A conservative mesh-free scheme and generalized framework for conservation laws. SIAM J. Sci. Comput. 34, A2896–A2916 (2012) CrossRefMATHMathSciNet
6.
Zurück zum Zitat Domene, C., Vemparala, S., Furini, S., Sharp, K., Klein, M.: The role of conformation in ion permeation in a k+ channel. J. Am. Chem. Soc. 130 (2008) Domene, C., Vemparala, S., Furini, S., Sharp, K., Klein, M.: The role of conformation in ion permeation in a k+ channel. J. Am. Chem. Soc. 130 (2008)
7.
Zurück zum Zitat Doyle, D., Cabral, J.M., Pfuetzner, R., Kuo J. G, A., Cohen, S., Chait, B., MacKinnon, R.: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280 (1998) Doyle, D., Cabral, J.M., Pfuetzner, R., Kuo J. G, A., Cohen, S., Chait, B., MacKinnon, R.: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280 (1998)
8.
Zurück zum Zitat Eisenberg, R.: Ion channels in biological membranes: electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447 (1998) CrossRef Eisenberg, R.: Ion channels in biological membranes: electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447 (1998) CrossRef
9.
Zurück zum Zitat Fisher, T., Carpenter, M., Nordström, J., Yamaleev, N., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2012) CrossRef Fisher, T., Carpenter, M., Nordström, J., Yamaleev, N., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2012) CrossRef
10.
Zurück zum Zitat Gardner, C., Jones, J.: Electrodiffusion model simulation of the potassium channel. J. Theor. Biol. 291, 10–13 (2011) CrossRef Gardner, C., Jones, J.: Electrodiffusion model simulation of the potassium channel. J. Theor. Biol. 291, 10–13 (2011) CrossRef
11.
Zurück zum Zitat Gardner, C., Nonner, W., Eisenberg, R.: Electrodiffusion model simulation of ionic channels: 1d simulations. J. Comput. Electron. 3, 25–31 (2004) CrossRef Gardner, C., Nonner, W., Eisenberg, R.: Electrodiffusion model simulation of ionic channels: 1d simulations. J. Comput. Electron. 3, 25–31 (2004) CrossRef
12.
Zurück zum Zitat Gillespie, D.: Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys. J. 94, 1169–1984 (2008) CrossRef Gillespie, D.: Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys. J. 94, 1169–1984 (2008) CrossRef
13.
Zurück zum Zitat Gillespie, D., Nonner, W., Eisenberg, R.: Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter 14, 12,129–12,145 (2002) CrossRef Gillespie, D., Nonner, W., Eisenberg, R.: Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter 14, 12,129–12,145 (2002) CrossRef
14.
Zurück zum Zitat Ham, F., Lien, F., Strong, A.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177, 117–133 (2002) CrossRefMATH Ham, F., Lien, F., Strong, A.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177, 117–133 (2002) CrossRefMATH
15.
Zurück zum Zitat Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182 (1965) CrossRefMATH Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182 (1965) CrossRefMATH
16.
Zurück zum Zitat Hof, B., Veldman, A.: Mass, momentum and energy conserving (mamec) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231, 4723–4744 (2012) CrossRefMATHMathSciNet Hof, B., Veldman, A.: Mass, momentum and energy conserving (mamec) discretizations on general grids for the compressible Euler and shallow water equations. J. Comput. Phys. 231, 4723–4744 (2012) CrossRefMATHMathSciNet
17.
Zurück zum Zitat Horng, T., Lin, T., Liu, C., Eisenberg, B.: PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116, 422–441 (2012) CrossRef Horng, T., Lin, T., Liu, C., Eisenberg, B.: PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116, 422–441 (2012) CrossRef
18.
Zurück zum Zitat Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer, Berlin (2003) CrossRefMATH Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer, Berlin (2003) CrossRefMATH
19.
Zurück zum Zitat Hyon, Y., Eisenberg, R., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011) CrossRefMATHMathSciNet Hyon, Y., Eisenberg, R., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011) CrossRefMATHMathSciNet
20.
Zurück zum Zitat Kajishima, T.: Finite-difference method for convective terms using non-uniform grid. Trans. Jpn. Soc. Mech. Eng. C 65-633(Part B), 1607–1612 (1999) CrossRef Kajishima, T.: Finite-difference method for convective terms using non-uniform grid. Trans. Jpn. Soc. Mech. Eng. C 65-633(Part B), 1607–1612 (1999) CrossRef
21.
Zurück zum Zitat Lee, C., Lee, H., Hyon, Y., Lin, T., Liu, C.: New Poisson–Boltzmann type equations: one-dimensional solutions. Nonlinearity 24, 431 (2011) CrossRefMATHMathSciNet Lee, C., Lee, H., Hyon, Y., Lin, T., Liu, C.: New Poisson–Boltzmann type equations: one-dimensional solutions. Nonlinearity 24, 431 (2011) CrossRefMATHMathSciNet
22.
Zurück zum Zitat Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995) CrossRefMATHMathSciNet Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995) CrossRefMATHMathSciNet
23.
Zurück zum Zitat Lopreore, C., Bartol, T., Coggan, J., Keller, D., Sosinsky, G., Ellisman, M., Sejnowski, T.: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of ranvier. Biophys. J. 95, 2624–2635 (2008) CrossRef Lopreore, C., Bartol, T., Coggan, J., Keller, D., Sosinsky, G., Ellisman, M., Sejnowski, T.: Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of ranvier. Biophys. J. 95, 2624–2635 (2008) CrossRef
24.
Zurück zum Zitat Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990) CrossRefMATH Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990) CrossRefMATH
25.
Zurück zum Zitat Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998) CrossRefMATHMathSciNet Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998) CrossRefMATHMathSciNet
26.
Zurück zum Zitat Morinishi, Y., Vasilyev, O., Ogi, T.: Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 197, 686–710 (2004) CrossRefMATH Morinishi, Y., Vasilyev, O., Ogi, T.: Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 197, 686–710 (2004) CrossRefMATH
27.
Zurück zum Zitat Nanninga, P.M.: A computational neuron model based on Poisson–Nernst–Planck theory. In: Mercer, G.N., Roberts, A.J. (eds.) Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, ANZIAM J, vol. 50, pp. C46–C59 (2008) Nanninga, P.M.: A computational neuron model based on Poisson–Nernst–Planck theory. In: Mercer, G.N., Roberts, A.J. (eds.) Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, ANZIAM J, vol. 50, pp. C46–C59 (2008)
28.
Zurück zum Zitat Neuen, C.: A multiscale approach to the Poisson–Nernst–Planck equation. Diploma Thesis, University of Bonn, Germany (2010) Neuen, C.: A multiscale approach to the Poisson–Nernst–Planck equation. Diploma Thesis, University of Bonn, Germany (2010)
29.
Zurück zum Zitat Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011) CrossRefMATHMathSciNet Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33(3), 1395–1414 (2011) CrossRefMATHMathSciNet
30.
Zurück zum Zitat Teorell, T.: Transport processes and electrical phenomena in ionic membranes. Prog. Biophys. Mol. Biol. 3, 305 (1953) Teorell, T.: Transport processes and electrical phenomena in ionic membranes. Prog. Biophys. Mol. Biol. 3, 305 (1953)
31.
Zurück zum Zitat Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys. 157(2), 746–761 (2000) CrossRefMATHMathSciNet Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comput. Phys. 157(2), 746–761 (2000) CrossRefMATHMathSciNet
32.
33.
Zurück zum Zitat Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11(4), 1395–1414 (2012) MathSciNet Zhang, Z., Qiao, Z.: An adaptive time-stepping strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11(4), 1395–1414 (2012) MathSciNet
Metadaten
Titel
A conservative finite difference scheme for Poisson–Nernst–Planck equations
verfasst von
Allen Flavell
Michael Machen
Bob Eisenberg
Julienne Kabre
Chun Liu
Xiaofan Li
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2014
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-013-0506-3

Weitere Artikel der Ausgabe 1/2014

Journal of Computational Electronics 1/2014 Zur Ausgabe

Neuer Inhalt