Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

07.11.2019

A conservative finite difference scheme for the N-component Cahn–Hilliard system on curved surfaces in 3D

verfasst von: Junxiang Yang, Yibao Li, Chaeyoung Lee, Darae Jeong, Junseok Kim

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a conservative finite difference scheme for solving the N-component Cahn–Hilliard (CH) system on curved surfaces in three-dimensional (3D) space. Inspired by the closest point method (Macdonald and Ruuth, SIAM J Sci Comput 31(6):4330–4350, 2019), we use the standard seven-point finite difference discretization for the Laplacian operator instead of the Laplacian–Beltrami operator. We only need to independently solve (\(N-1\)) CH equations in a narrow band domain around the surface because the solution for the Nth component can be obtained directly. The N-component CH system is discretized using an unconditionally stable nonlinear splitting numerical scheme, and it is solved by using a Jacobi-type iteration. Several numerical tests are performed to demonstrate the capability of the proposed numerical scheme. The proposed multicomponent model can be simply modified to simulate phase separation in a complex domain on 3D surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cahn JW (1965) Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 42(1):93–99CrossRef Cahn JW (1965) Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 42(1):93–99CrossRef
2.
Zurück zum Zitat Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth - 1. Model and numerical method. J Theor Biol 253:524–543MathSciNetMATHCrossRef Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth - 1. Model and numerical method. J Theor Biol 253:524–543MathSciNetMATHCrossRef
3.
Zurück zum Zitat Dehghan M, Mohammadi V (2017) Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model. Commun Nonlinear Sci Numer Simul 44:204–219MathSciNetCrossRef Dehghan M, Mohammadi V (2017) Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model. Commun Nonlinear Sci Numer Simul 44:204–219MathSciNetCrossRef
4.
Zurück zum Zitat Deng Y, Liu Z, Wu Y (2017) Topology optimization of capillary, two-phase flow problems. Commun Comput Phys 22:1413–1438MathSciNetCrossRef Deng Y, Liu Z, Wu Y (2017) Topology optimization of capillary, two-phase flow problems. Commun Comput Phys 22:1413–1438MathSciNetCrossRef
5.
Zurück zum Zitat Zhang Y, Ye W (2017) A flux-corrected phase-field method for surface diffusion. Commun Comput Phys 22:422–440MathSciNetCrossRef Zhang Y, Ye W (2017) A flux-corrected phase-field method for surface diffusion. Commun Comput Phys 22:422–440MathSciNetCrossRef
6.
Zurück zum Zitat Ju L, Zhang J, Du Q (2015) Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations. Comput Mater Sci 108:272–282CrossRef Ju L, Zhang J, Du Q (2015) Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations. Comput Mater Sci 108:272–282CrossRef
7.
Zurück zum Zitat Kang D, Chugunova M, Nadim A, Waring AJ, Walther FJ (2018) Modeling coating flow and surfactant dynamics inside the alveolar compartment. J Eng Math 113(1):23–43MathSciNetMATHCrossRef Kang D, Chugunova M, Nadim A, Waring AJ, Walther FJ (2018) Modeling coating flow and surfactant dynamics inside the alveolar compartment. J Eng Math 113(1):23–43MathSciNetMATHCrossRef
8.
Zurück zum Zitat Lee D, Huh JY, Jeong D, Shin J, Yun A, Kim JS (2014) Physical, mathematical, and numerical derivations of the Cahn–Hilliard euqation. Comput Mater Sci 81:216–225CrossRef Lee D, Huh JY, Jeong D, Shin J, Yun A, Kim JS (2014) Physical, mathematical, and numerical derivations of the Cahn–Hilliard euqation. Comput Mater Sci 81:216–225CrossRef
9.
Zurück zum Zitat Kim J, Lee S, Choi Y, lee SM, Jeong D (2016) Basic principles and practical applications of the Cahn–Hilliard equation. Math Probl Eng 2016:9532608MathSciNetMATH Kim J, Lee S, Choi Y, lee SM, Jeong D (2016) Basic principles and practical applications of the Cahn–Hilliard equation. Math Probl Eng 2016:9532608MathSciNetMATH
10.
Zurück zum Zitat Lee HG, Kim J (2013) Buoyancy-driven mixing of multi-component fluids in two-dimensional titled channels. Eur J Mech B 42:37–46MATHCrossRef Lee HG, Kim J (2013) Buoyancy-driven mixing of multi-component fluids in two-dimensional titled channels. Eur J Mech B 42:37–46MATHCrossRef
11.
Zurück zum Zitat Park JM, Anderson PD (2012) A ternary model for double-emulsion formation in a capillary microfluidic device. Lab Chip 12:2672–2677CrossRef Park JM, Anderson PD (2012) A ternary model for double-emulsion formation in a capillary microfluidic device. Lab Chip 12:2672–2677CrossRef
12.
Zurück zum Zitat Lee HG, Kim J (2015) Two-dimesional Kelvin–Helmholtz instabilities of multi-component fluids. Eur J Mech B 49:77–88MATHCrossRef Lee HG, Kim J (2015) Two-dimesional Kelvin–Helmholtz instabilities of multi-component fluids. Eur J Mech B 49:77–88MATHCrossRef
13.
Zurück zum Zitat Bhattacharyya S, Abinanadanan TA (2003) A study of phase separation in ternary alloys. Bull Mater Sci 26:193CrossRef Bhattacharyya S, Abinanadanan TA (2003) A study of phase separation in ternary alloys. Bull Mater Sci 26:193CrossRef
14.
Zurück zum Zitat Lee HG, Kim J (2008) A second-order accurate non-linear difference scheme for the \(N\)-component Cahn–Hilliard system. Physica A 387:4787–4799MathSciNetCrossRef Lee HG, Kim J (2008) A second-order accurate non-linear difference scheme for the \(N\)-component Cahn–Hilliard system. Physica A 387:4787–4799MathSciNetCrossRef
15.
Zurück zum Zitat Lee HG, Choi JW, Kim J (2012) A practically unconditionally gradient stable scheme for the \(N\)-component Cahn–Hilliard system. Physica A 391:1009–1019CrossRef Lee HG, Choi JW, Kim J (2012) A practically unconditionally gradient stable scheme for the \(N\)-component Cahn–Hilliard system. Physica A 391:1009–1019CrossRef
16.
Zurück zum Zitat Li Y, Choi JI, Kim J (2016) Multi-component Cahn–Hilliard system with different boundary conditions in complex domains. J Comput Phys 323:1–16MathSciNetMATHCrossRef Li Y, Choi JI, Kim J (2016) Multi-component Cahn–Hilliard system with different boundary conditions in complex domains. J Comput Phys 323:1–16MathSciNetMATHCrossRef
17.
Zurück zum Zitat Jeong D, Yang J, Kim J (2019) A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains. Commun Nonlinear Sci Numer Simul 73:217–228MathSciNetCrossRef Jeong D, Yang J, Kim J (2019) A practical and efficient numerical method for the Cahn–Hilliard equation in complex domains. Commun Nonlinear Sci Numer Simul 73:217–228MathSciNetCrossRef
18.
Zurück zum Zitat Du Q, Ju L, Tian L (2011) Finite element approximation of the Cahn–Hilliard equation on surfaces. Comput Methods Appl Mech Eng 200(29–32):2458–2470MathSciNetMATHCrossRef Du Q, Ju L, Tian L (2011) Finite element approximation of the Cahn–Hilliard equation on surfaces. Comput Methods Appl Mech Eng 200(29–32):2458–2470MathSciNetMATHCrossRef
19.
Zurück zum Zitat Li Y, Kim J, Wang N (2017) An unconditionally energy-stable second-order time-accurte scheme for the Cahn-Hilliard equation on surfaces. Commun Nonlinear Sci Numer Simul 53:213–227MathSciNetCrossRef Li Y, Kim J, Wang N (2017) An unconditionally energy-stable second-order time-accurte scheme for the Cahn-Hilliard equation on surfaces. Commun Nonlinear Sci Numer Simul 53:213–227MathSciNetCrossRef
20.
Zurück zum Zitat Li Y, Qi X, Kim J (2018) Direct discretization method for the Cahn–Hilliard equation on an evolving surface. J Sci Comput 77:1147–1163MathSciNetMATHCrossRef Li Y, Qi X, Kim J (2018) Direct discretization method for the Cahn–Hilliard equation on an evolving surface. J Sci Comput 77:1147–1163MathSciNetMATHCrossRef
21.
Zurück zum Zitat Li Y, Luo C, Xia B, Kim J (2019) An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. Appl Math Model 67:477–490MathSciNetCrossRef Li Y, Luo C, Xia B, Kim J (2019) An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. Appl Math Model 67:477–490MathSciNetCrossRef
22.
Zurück zum Zitat Dziuk G, Elliott CM (2007) Surface finite elements for parabolic equations. J Comput Math 25(4):385–407MathSciNet Dziuk G, Elliott CM (2007) Surface finite elements for parabolic equations. J Comput Math 25(4):385–407MathSciNet
23.
Zurück zum Zitat Green JB, Bertozzi AL, Sapiro G (2006) Fourth order paratial differential equations on general geometries. J Comput Phys 216(1):216–246MathSciNetCrossRef Green JB, Bertozzi AL, Sapiro G (2006) Fourth order paratial differential equations on general geometries. J Comput Phys 216(1):216–246MathSciNetCrossRef
24.
Zurück zum Zitat Jeong D, Li Y, Lee C, Yang J, Kim J (2019) A conservative numerical method for the Cahn–Hilliard euqation with generalized mobilities on curved surfaces in three-dimensional space. Commun Comput Phys (in press) Jeong D, Li Y, Lee C, Yang J, Kim J (2019) A conservative numerical method for the Cahn–Hilliard euqation with generalized mobilities on curved surfaces in three-dimensional space. Commun Comput Phys (in press)
25.
Zurück zum Zitat Eyre DJ (1998) Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and mathematical models of microstructural evolution. MRS proceedings, vol 529, pp 39–46 Eyre DJ (1998) Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and mathematical models of microstructural evolution. MRS proceedings, vol 529, pp 39–46
26.
Zurück zum Zitat Kim J (2009) A generalized continuous surface force formulation for phase-field models for multi-component immiscible fluid flows. Comput Methods Appl Mech Eng 198:3105–3112MathSciNetMATHCrossRef Kim J (2009) A generalized continuous surface force formulation for phase-field models for multi-component immiscible fluid flows. Comput Methods Appl Mech Eng 198:3105–3112MathSciNetMATHCrossRef
27.
Zurück zum Zitat Macdonald CB, Brandman J, Ruuth SJ (2011) Solving eigenvalue problems on curved surfaces using the closet point method. J Comput Phys 230:7944–7956MathSciNetMATH Macdonald CB, Brandman J, Ruuth SJ (2011) Solving eigenvalue problems on curved surfaces using the closet point method. J Comput Phys 230:7944–7956MathSciNetMATH
28.
Zurück zum Zitat Ruuth SJ, Merriman B (2008) A simple embedding method for solving partial differential equations on surfaces. J Comput Phys 227(3):1943–1961MathSciNetMATHCrossRef Ruuth SJ, Merriman B (2008) A simple embedding method for solving partial differential equations on surfaces. J Comput Phys 227(3):1943–1961MathSciNetMATHCrossRef
29.
30.
Zurück zum Zitat Macdonald CB, Ruuth SJ (2009) The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J Sci Comput 31(6):4330–4350MathSciNetMATHCrossRef Macdonald CB, Ruuth SJ (2009) The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J Sci Comput 31(6):4330–4350MathSciNetMATHCrossRef
31.
Zurück zum Zitat Choi JW, Lee HG, Jeong D, Kim J (2009) An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A 338(9):1791–1803MathSciNetCrossRef Choi JW, Lee HG, Jeong D, Kim J (2009) An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A 338(9):1791–1803MathSciNetCrossRef
32.
Zurück zum Zitat Jeong D, Li Y, Choi Y, Yoo M, Kang D, Park J, Choi J, Kim J (2017) Numerical simulation of the zebra pattern formation on a three-dimensional model. Physica A 475:106–116MathSciNetMATHCrossRef Jeong D, Li Y, Choi Y, Yoo M, Kang D, Park J, Choi J, Kim J (2017) Numerical simulation of the zebra pattern formation on a three-dimensional model. Physica A 475:106–116MathSciNetMATHCrossRef
Metadaten
Titel
A conservative finite difference scheme for the N-component Cahn–Hilliard system on curved surfaces in 3D
verfasst von
Junxiang Yang
Yibao Li
Chaeyoung Lee
Darae Jeong
Junseok Kim
Publikationsdatum
07.11.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-10023-9

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.