Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2016

01.12.2016 | Special Issue: Theory, Modeling, and Simulation of Shape Memory Alloys, Invited Paper

A Constitutive Model for Isothermal Pseudoelasticity Coupled with Plasticity

verfasst von: Dongjie Jiang, Chad M. Landis

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new constitutive model for isothermal pseudoelastic shape memory alloys is presented. The model is based upon a kinematic hardening framework that was previously developed for ferroelastic and ferroelectric switching behavior. The basis of the model includes a transformation surface, an associated flow rule for transformation strain, and kinematic hardening with the back stresses represented by a transformation potential that is dependent upon the transformation strain. In contrast to many models that introduce tension/compression asymmetry by devising transformation surfaces in terms of invariants of the stress tensor, this model achieves this capability by means of expressing the transformation potential from which the back stresses are derived as a weighted mix of two potentials that are, respectively, calibrated to measured tensile and compressive responses. Additionally, in this model, plastic deformation is allowed to occur at high stresses by employing a standard \(J_{2}\)-based yield surface with isotropic hardening. Finally, to demonstrate the ability of the constitutive model to perform in highly non-proportional loading states, some finite element simulations on crack tip fields are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43:1243–1281CrossRef Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43:1243–1281CrossRef
2.
Zurück zum Zitat Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford
3.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension-compression asymmetry of the stress-strain responses in aged single crystal and polycrystalline NiTi. Acta Mater. 47:1203–1217CrossRef Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV (1999) Tension-compression asymmetry of the stress-strain responses in aged single crystal and polycrystalline NiTi. Acta Mater. 47:1203–1217CrossRef
4.
Zurück zum Zitat Bechle NJ, Kyriakides S (2014) Localization in NiTi tubes under bending. Int J Solids Struct 51:967–980CrossRef Bechle NJ, Kyriakides S (2014) Localization in NiTi tubes under bending. Int J Solids Struct 51:967–980CrossRef
5.
Zurück zum Zitat Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537CrossRef Reedlunn B, Churchill CB, Nelson EE, Shaw JA, Daly SH (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537CrossRef
6.
Zurück zum Zitat Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao X (2006) Shape memory alloys. Part II: Modeling of polycrystals. Mech Mater 38:430–462CrossRef Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao X (2006) Shape memory alloys. Part II: Modeling of polycrystals. Mech Mater 38:430–462CrossRef
7.
Zurück zum Zitat Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys. Part I: General properties and modeling of single crystals. Mech Mater 38:391–429CrossRef Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys. Part I: General properties and modeling of single crystals. Mech Mater 38:391–429CrossRef
8.
Zurück zum Zitat Boyd JG, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plast 12:805–842CrossRef Boyd JG, Lagoudas DC (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plast 12:805–842CrossRef
9.
Zurück zum Zitat Qidwai MA, Lagoudas DC (2000) On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int J Plast 16:1309–1343CrossRef Qidwai MA, Lagoudas DC (2000) On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int J Plast 16:1309–1343CrossRef
10.
Zurück zum Zitat Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61:807–836CrossRef Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61:807–836CrossRef
11.
Zurück zum Zitat Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological model for shape memory alloys under multiaxial loadings. Int J Plast 26:976–991CrossRef Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3-D phenomenological model for shape memory alloys under multiaxial loadings. Int J Plast 26:976–991CrossRef
12.
Zurück zum Zitat Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3D finite strain phenomenological model for shape memory alloys considering martensite reorientation. Contin Mech Thermodyn 22:345–362CrossRef Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010) A 3D finite strain phenomenological model for shape memory alloys considering martensite reorientation. Contin Mech Thermodyn 22:345–362CrossRef
13.
Zurück zum Zitat Panico M, Brinson LC (2007) A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J Mech Phys Solids 55:2491–2511CrossRef Panico M, Brinson LC (2007) A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J Mech Phys Solids 55:2491–2511CrossRef
14.
Zurück zum Zitat Brocca M, Brinson LC, Bazant ZP (2002) Three-dimensional constitutive model for shape memory alloys based on microplane model. J Mech Phys Solids 50:1051–1077CrossRef Brocca M, Brinson LC, Bazant ZP (2002) Three-dimensional constitutive model for shape memory alloys based on microplane model. J Mech Phys Solids 50:1051–1077CrossRef
15.
Zurück zum Zitat Karamooz Ravari MR, Kadkhodaei M, Ghaei A (2015) A microplane constitutive model for shape memory alloys considering tension/compression asymmetry. Smart Mater Struct 24:075016CrossRef Karamooz Ravari MR, Kadkhodaei M, Ghaei A (2015) A microplane constitutive model for shape memory alloys considering tension/compression asymmetry. Smart Mater Struct 24:075016CrossRef
16.
Zurück zum Zitat Landis CM (2002) Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J Mech Phys Solids 50:127–152CrossRef Landis CM (2002) Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J Mech Phys Solids 50:127–152CrossRef
17.
Zurück zum Zitat Landis CM (2003) On the strain saturation conditions for polycrystalline ferroelastic materials. ASME J Appl Mech 70:470–478CrossRef Landis CM (2003) On the strain saturation conditions for polycrystalline ferroelastic materials. ASME J Appl Mech 70:470–478CrossRef
18.
Zurück zum Zitat Landis CM (2003) On the fracture toughness of ferroelastic materials. J Mech Phys Solids 51:1347–1369CrossRef Landis CM (2003) On the fracture toughness of ferroelastic materials. J Mech Phys Solids 51:1347–1369CrossRef
19.
Zurück zum Zitat Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier HJ, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater. 48:3311–3326CrossRef Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier HJ, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater. 48:3311–3326CrossRef
20.
Zurück zum Zitat Ezaz T, Wang J, Sehitoglu H, Maier HJ (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61:67–68CrossRef Ezaz T, Wang J, Sehitoglu H, Maier HJ (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61:67–68CrossRef
21.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2009) Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater Struct 18:104017CrossRef Hartl DJ, Lagoudas DC (2009) Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater Struct 18:104017CrossRef
22.
Zurück zum Zitat Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36:865–892CrossRef Lagoudas DC, Entchev PB (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs. Mech Mater 36:865–892CrossRef
23.
Zurück zum Zitat Jiang D, Bechle N, Landis CM, Kyriakides S (2016) Buckling and recovery of NiTi tubes under axial compression. Int J Solids Struct 80:52–63CrossRef Jiang D, Bechle N, Landis CM, Kyriakides S (2016) Buckling and recovery of NiTi tubes under axial compression. Int J Solids Struct 80:52–63CrossRef
25.
Zurück zum Zitat Sedlak P, Frost M, Benesova B, Zineb TB, Sitnner P (2012) Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plast 39:132–151CrossRef Sedlak P, Frost M, Benesova B, Zineb TB, Sitnner P (2012) Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings. Int J Plast 39:132–151CrossRef
26.
Zurück zum Zitat Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P (2002) Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50:2717–2735CrossRef Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P (2002) Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50:2717–2735CrossRef
27.
Zurück zum Zitat Christ D, Reese S (2009) A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int J Solids Struct 46:3694–3709CrossRef Christ D, Reese S (2009) A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int J Solids Struct 46:3694–3709CrossRef
28.
Zurück zum Zitat Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194CrossRef Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194CrossRef
29.
Zurück zum Zitat Zaki W (2010) An approach to modeling tensile-compressive asymmetry for martensitic shape memory alloys. Smart Mater Struct 19:025009CrossRef Zaki W (2010) An approach to modeling tensile-compressive asymmetry for martensitic shape memory alloys. Smart Mater Struct 19:025009CrossRef
30.
Zurück zum Zitat Aleong D, Dumont C, Chirani SA, Patoor E, McDowell DL (2002) Transformation surfaces of a textured pseudoelastic polycrystalline Cu-Zn-Al shape memory alloy. J Intell Mater Syst 13:783–793CrossRef Aleong D, Dumont C, Chirani SA, Patoor E, McDowell DL (2002) Transformation surfaces of a textured pseudoelastic polycrystalline Cu-Zn-Al shape memory alloy. J Intell Mater Syst 13:783–793CrossRef
31.
Zurück zum Zitat Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRef Baxevanis T, Chemisky Y, Lagoudas DC (2012) Finite element analysis of the plane strain crack-tip mechanical fields in pseudoelastic shape memory alloys. Smart Mater Struct 21(9):094012CrossRef
32.
Zurück zum Zitat Carka D, Mear ME, Landis CM (2011) The dirichlet-to-neumann map for two-dimensional crack problems. Comput Methods Appl Mech Eng 200:1263–1271CrossRef Carka D, Mear ME, Landis CM (2011) The dirichlet-to-neumann map for two-dimensional crack problems. Comput Methods Appl Mech Eng 200:1263–1271CrossRef
33.
Zurück zum Zitat Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21:405–421CrossRef Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21:405–421CrossRef
34.
Zurück zum Zitat Carka D, Landis CM (2011) On the Path-dependence of the J-integral in an elastic-plastic material. J Appl Mech 78:011006CrossRef Carka D, Landis CM (2011) On the Path-dependence of the J-integral in an elastic-plastic material. J Appl Mech 78:011006CrossRef
35.
Zurück zum Zitat Carka D, Landis CM (2011) The analysis of crack tip fields in ferroelastic materials. Smart Mater Struct 20:094005CrossRef Carka D, Landis CM (2011) The analysis of crack tip fields in ferroelastic materials. Smart Mater Struct 20:094005CrossRef
36.
Zurück zum Zitat Dean RH, Hutchinson JW (1980) Quasi-static steady crack growth in small scale yielding. Fracture Mechanics, ASTM-STP 700:383–405 Dean RH, Hutchinson JW (1980) Quasi-static steady crack growth in small scale yielding. Fracture Mechanics, ASTM-STP 700:383–405
37.
Zurück zum Zitat Hutchinson JW (1974) On steady quasi-static crack growth. Harvard University Report, Division of Applied Sciences, DEAP S-8 Hutchinson JW (1974) On steady quasi-static crack growth. Harvard University Report, Division of Applied Sciences, DEAP S-8
38.
Zurück zum Zitat Wang J, Landis CM (2006) Effects of In-plane electric fields on the toughening behavior of ferroelectric ceramics. J Mech Mater Struct 1:1075–1095CrossRef Wang J, Landis CM (2006) Effects of In-plane electric fields on the toughening behavior of ferroelectric ceramics. J Mech Mater Struct 1:1075–1095CrossRef
39.
Zurück zum Zitat Wang J, Landis CM (2006) Domain switch toughening in polycrystalline ferroelectrics. J Mater Res 21:13–20CrossRef Wang J, Landis CM (2006) Domain switch toughening in polycrystalline ferroelectrics. J Mater Res 21:13–20CrossRef
40.
Zurück zum Zitat Baxevanis T, Landis CM, Lagoudas DC (2014) On the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81:041005CrossRef Baxevanis T, Landis CM, Lagoudas DC (2014) On the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81:041005CrossRef
41.
Zurück zum Zitat Baxevanis T, Landis CM, Lagoudas DC (2014) On the effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81:101006CrossRef Baxevanis T, Landis CM, Lagoudas DC (2014) On the effect of latent heat on the fracture toughness of pseudoelastic shape memory alloys. J Appl Mech 81:101006CrossRef
Metadaten
Titel
A Constitutive Model for Isothermal Pseudoelasticity Coupled with Plasticity
verfasst von
Dongjie Jiang
Chad M. Landis
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2016
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-016-0078-8

Weitere Artikel der Ausgabe 4/2016

Shape Memory and Superelasticity 4/2016 Zur Ausgabe

SPECIAL ISSUE: NOVEL SHAPE MEMORY ALLOYS – BEHAVIOR AND PROCESSING, INVITED PAPER

Several Issues in the Development of Ti–Nb-Based Shape Memory Alloys

SPECIAL ISSUE: THEORY, MODELING, AND SIMULATION OF SHAPE MEMORY ALLOYS, INVITED PAPER

NiMnGa/Si Shape Memory Bimorph Nanoactuation

SPECIAL ISSUE: ADVANCES IN EXPERIMENTATION AT MULTIPLE LENGTH SCALES IN SHAPE MEMORY ALLOYS, INVITED PAPER

On the Transformation Behavior of NiTi Shape-Memory Alloy Produced by SLM

SPECIAL ISSUE: ADVANCES IN EXPERIMENTATION AT MULTIPLE LENGTH SCALES IN SHAPE MEMORY ALLOYS, INVITED PAPER

Microscale Repeatability of the Shape-Memory Effect in Fine NiTi Wires

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.