Skip to main content
Erschienen in: Soft Computing 23/2020

15.07.2020 | Focus

A constructive sequence algebra for the calculus of indications

verfasst von: Rocco Gangle, Gianluca Caterina, Fernando Tohmé

Erschienen in: Soft Computing | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate some aspects of Spencer–Brown’s Calculus of Indications. Drawing from earlier work by Kauffman and Varela, we present a new categorical framework that allows to characterize the construction of infinite arithmetic expressions as sequences taking values in grossone.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This is akin to Peirce’s \(\alpha \) graphs (Zeman 1974; Gangle et al. 2020), although with a basic but immaterial difference between the representations of True and False in the two formalisms.
 
2
The introduction of the numeral ① may require, in some contexts, the augmentation of the set of natural \({\mathbb {N}}\) to a larger set \(\hat{{\mathbb {N}}}\), where
https://static-content.springer.com/image/art%3A10.1007%2Fs00500-020-05121-1/MediaObjects/500_2020_5121_Equ5_HTML.png
For the purpose of this paper we will not need to make use of \(\hat{{\mathbb {N}}}\).
 
3
Evidence of the efficacy of the grossone approach is highlighted by its successful application to many fields of applied mathematics, including optimization (see Cococcioni et al. 2018, 2020; De Cosmis and De Leone 2012; Sergeyev et al. 2018; Iavernaro et al. 2020; Iudin et al. 2012; Sergeyev 2007, 2013b; Zhigljavsky 2012), fractals and cellular automata (see Caldarola 2018; D’Alotto 2012, 2015, 2013) as well as infinite decision-making processes, game theory, and probability (see Fiaschi and Cococcioni 2018; Rizza 2018, 2019), whereas the formal logical foundation of grossone has been investigated in Lolli (2012); Margenstern (2011); Montagna et al. (2015). The approach presented in this paper bears similarities to the application of grossone to Turing machines as described in Sergeyev and Garro (2010). Further investigation of these analogies remains open.
 
4
The two systems are slightly different in terms of their rules of deduction (or rewriting). We do not examine this point any further in this paper.
 
5
The relevance of grossone to this construction will appear in the subsequent sections.
 
6
Our approach is similar to that of Varela and Goguen (1978) in that it involves limits of sequences. But by calculating values of the sequences themselves, and not only their limits, the (complex algebra) waveform interpretation of Kauffman and Varela (1980) is partially maintained as well.
 
7
Here the objects are the natural numbers, and there is a morphism between two natural numbers \(m\rightarrow n\) if and only if \(m\ge n\). The choice of reversing the natural order is made in order for the functor F to be contravariant.
 
8
The condition given here guarantees that all nested cuts are of at most depth \(n-1\).
 
9
A monic arrow in any category is defined as follows. Given any morphism \(f: A\longrightarrow B\), f is said to be monic if, for any two morphisms \(g,h: Z\longrightarrow A\) such that \(f\circ g=f\circ h\), it is the case that \(g=h\).
 
10
\(\coprod \) is well defined in \({\mathcal {CI}}\) since it is a topos.
 
11
A formal categorical characterization of a variant of this procedure, applied to cuts-only \(\alpha \) graphs can found in Gangle et al. (2020).
 
12
Note that it is important to distinguish this operator https://static-content.springer.com/image/art%3A10.1007%2Fs00500-020-05121-1/MediaObjects/500_2020_5121_Figc_HTML.gif (as an operation on \(\alpha \)) from the circle drawn around 1 in the grossone numeral ① .
 
Literatur
Zurück zum Zitat Barwise J, Etchemendy J (1989) The liar: an essay on truth and circularity. Oxford University Press, New YorkMATH Barwise J, Etchemendy J (1989) The liar: an essay on truth and circularity. Oxford University Press, New YorkMATH
Zurück zum Zitat Caldarola F (2018) The Sierpinski curve viewed by numerical computations with infinities and infinitesimals. Appl Math Comput 318:321–328MATH Caldarola F (2018) The Sierpinski curve viewed by numerical computations with infinities and infinitesimals. Appl Math Comput 318:321–328MATH
Zurück zum Zitat Caterina G, Gangle R (2013) Iconicity and abduction: a categorical approach to creative hypothesis-formation in Peirce’s existential graphs. Logic J IGPL 21(6):1028–1043MathSciNetCrossRef Caterina G, Gangle R (2013) Iconicity and abduction: a categorical approach to creative hypothesis-formation in Peirce’s existential graphs. Logic J IGPL 21(6):1028–1043MathSciNetCrossRef
Zurück zum Zitat Caterina G, Gangle R (2016) Iconicity and abduction. Springer, New YorkCrossRef Caterina G, Gangle R (2016) Iconicity and abduction. Springer, New YorkCrossRef
Zurück zum Zitat Cococcioni M, Pappalardo M, Sergeyev YD (2018) Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl Math Comput 318:298–311MATH Cococcioni M, Pappalardo M, Sergeyev YD (2018) Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl Math Comput 318:298–311MATH
Zurück zum Zitat Cococcioni M, Cudazzo A, Pappalardo M, Sergeyev YD (2020) Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology. Commun Nonlinear Sci Numer Simul 84:1–20MathSciNetCrossRef Cococcioni M, Cudazzo A, Pappalardo M, Sergeyev YD (2020) Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology. Commun Nonlinear Sci Numer Simul 84:1–20MathSciNetCrossRef
Zurück zum Zitat D’Alotto L (2012) Cellular automata using infinite computations. Appl Math Comput 218(16):8077–8082MathSciNetMATH D’Alotto L (2012) Cellular automata using infinite computations. Appl Math Comput 218(16):8077–8082MathSciNetMATH
Zurück zum Zitat D’Alotto L (2013) A classification of two-dimensional cellular automata using infinite computations. Indian J Math 55:143–158MathSciNetMATH D’Alotto L (2013) A classification of two-dimensional cellular automata using infinite computations. Indian J Math 55:143–158MathSciNetMATH
Zurück zum Zitat D’Alotto L (2015) A Classification of One-Dimensional Cellular Automata using Infinite Computations. Applied Mathematics and Computation 255:15–24MathSciNetCrossRef D’Alotto L (2015) A Classification of One-Dimensional Cellular Automata using Infinite Computations. Applied Mathematics and Computation 255:15–24MathSciNetCrossRef
Zurück zum Zitat De Cosmis S, De Leone R (2012) The use of grossone in mathematical programming and operations research. Appl Math Comput 218(16):8029–8038MathSciNetMATH De Cosmis S, De Leone R (2012) The use of grossone in mathematical programming and operations research. Appl Math Comput 218(16):8029–8038MathSciNetMATH
Zurück zum Zitat Fiaschi L, Cococcioni M (2018) Numerical asymptotic results in game theory using Sergeyev’s infinity computing. Int J Unconvent Comput 14(1):1–25 Fiaschi L, Cococcioni M (2018) Numerical asymptotic results in game theory using Sergeyev’s infinity computing. Int J Unconvent Comput 14(1):1–25
Zurück zum Zitat Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD (2020) Conjugate-symplecticity properties of Euler–Maclaurin methods and their implementation on the infinity computer. Appl Numer Math 155:58–72MathSciNetCrossRef Iavernaro F, Mazzia F, Mukhametzhanov MS, Sergeyev YD (2020) Conjugate-symplecticity properties of Euler–Maclaurin methods and their implementation on the infinity computer. Appl Numer Math 155:58–72MathSciNetCrossRef
Zurück zum Zitat Iudin D, Sergeyev YD, Hayakawa M (2012) Interpretation of percolation in terms of infinity computations. Appl Math Comput 218(16):8099–8111MathSciNetMATH Iudin D, Sergeyev YD, Hayakawa M (2012) Interpretation of percolation in terms of infinity computations. Appl Math Comput 218(16):8099–8111MathSciNetMATH
Zurück zum Zitat Kauffman LH, Varela FJ (1980) Form dynamics. J Soc Biol Struct 3:171–206CrossRef Kauffman LH, Varela FJ (1980) Form dynamics. J Soc Biol Struct 3:171–206CrossRef
Zurück zum Zitat Lolli G (2012) Infinitesimals and infinites in the history of mathematics: a brief survey. Appl Math Comput 218(16):7979–7988MathSciNetMATH Lolli G (2012) Infinitesimals and infinites in the history of mathematics: a brief survey. Appl Math Comput 218(16):7979–7988MathSciNetMATH
Zurück zum Zitat Luhmann N (1995) Social systems. Stanford University Press, Stanford Luhmann N (1995) Social systems. Stanford University Press, Stanford
Zurück zum Zitat Mac Lane S (1998) Categories for the working mathematician. Springer, BerlinMATH Mac Lane S (1998) Categories for the working mathematician. Springer, BerlinMATH
Zurück zum Zitat Margenstern M (2011) Using Grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers. Ultrametric Anal Appl 3(3):196–204MathSciNetCrossRef Margenstern M (2011) Using Grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers. Ultrametric Anal Appl 3(3):196–204MathSciNetCrossRef
Zurück zum Zitat Montagna F, Simi G, Sorbi A (2015) Taking the Pirahã seriously. Commun Nonlinear Sci Numer Simul 21(1–3):52–69MathSciNetCrossRef Montagna F, Simi G, Sorbi A (2015) Taking the Pirahã seriously. Commun Nonlinear Sci Numer Simul 21(1–3):52–69MathSciNetCrossRef
Zurück zum Zitat Reyes M, Reyes G, Zolfaghari H (2004) Generic figures and their glueings. Polimetrica, MilanMATH Reyes M, Reyes G, Zolfaghari H (2004) Generic figures and their glueings. Polimetrica, MilanMATH
Zurück zum Zitat Rizza D (2018) A study of mathematical determination through Bertrand’s Paradox. Philosophia Mathematica 26(3):375–395MathSciNetCrossRef Rizza D (2018) A study of mathematical determination through Bertrand’s Paradox. Philosophia Mathematica 26(3):375–395MathSciNetCrossRef
Zurück zum Zitat Rizza D (2019) Numerical methods for infinite decision-making processes. Int J Unconvent Comput 14(2):139–158 Rizza D (2019) Numerical methods for infinite decision-making processes. Int J Unconvent Comput 14(2):139–158
Zurück zum Zitat Sergeyev YD (2013a). Arithmetic of infinity. Edizioni Orizzonti Meridionali, 2nd edition Sergeyev YD (2013a). Arithmetic of infinity. Edizioni Orizzonti Meridionali, 2nd edition
Zurück zum Zitat Sergeyev YD (2007) Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons Fract 33:50–75CrossRef Sergeyev YD (2007) Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons Fract 33:50–75CrossRef
Zurück zum Zitat Sergeyev YD (2010) Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. USA Patent 7(860):914 Sergeyev YD (2010) Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. USA Patent 7(860):914
Zurück zum Zitat Sergeyev YD (2013b) Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer. Appl Math Comput 219(22):10668–10681 Sergeyev YD (2013b) Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer. Appl Math Comput 219(22):10668–10681
Zurück zum Zitat Sergeyev YD (2017) Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv Math Sci 4(2):219–320MathSciNetCrossRef Sergeyev YD (2017) Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv Math Sci 4(2):219–320MathSciNetCrossRef
Zurück zum Zitat Sergeyev YD, Garro A (2010) Observability of turing machines: a refinement of the theory of computation. Informatica 21(3):425–454MathSciNetCrossRef Sergeyev YD, Garro A (2010) Observability of turing machines: a refinement of the theory of computation. Informatica 21(3):425–454MathSciNetCrossRef
Zurück zum Zitat Sergeyev YD, Kvasov DE, Mukhametzhanov MS (2018) On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun Nonlinear Sci Numer Simul 59:319–330MathSciNetCrossRef Sergeyev YD, Kvasov DE, Mukhametzhanov MS (2018) On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales. Commun Nonlinear Sci Numer Simul 59:319–330MathSciNetCrossRef
Zurück zum Zitat Spencer-Brown G (1969) Laws of form. Allen & Unwin, LondonMATH Spencer-Brown G (1969) Laws of form. Allen & Unwin, LondonMATH
Zurück zum Zitat Tohmé F, Caterina G, Gangle Rocco (2020) Computing Truth Values in the Topos of \(\alpha \)-Infinite Peirce’s Existential Graphs. In press, Applied Mathematics and Computation Tohmé F, Caterina G, Gangle Rocco (2020) Computing Truth Values in the Topos of \(\alpha \)-Infinite Peirce’s Existential Graphs. In press, Applied Mathematics and Computation
Zurück zum Zitat Zalamea F (2010) Towards a complex variable interpretation of Peirce’s existential graphs. In: Bergman M et al (eds) Ideas in action. Proceedings of the applying peirce conference, Nordic Pragmatism Network, Helsinki, pp 254–264 Zalamea F (2010) Towards a complex variable interpretation of Peirce’s existential graphs. In: Bergman M et al (eds) Ideas in action. Proceedings of the applying peirce conference, Nordic Pragmatism Network, Helsinki, pp 254–264
Zurück zum Zitat Zeman J (1974) Peirce’s logical graphs. Semiotica 12:239–256 Zeman J (1974) Peirce’s logical graphs. Semiotica 12:239–256
Zurück zum Zitat Zhigljavsky A (2012) Computing sums of conditionally convergent and divergent series using the concept of Grossone. Appl Math Comput 218:8064–8076MathSciNetMATH Zhigljavsky A (2012) Computing sums of conditionally convergent and divergent series using the concept of Grossone. Appl Math Comput 218:8064–8076MathSciNetMATH
Metadaten
Titel
A constructive sequence algebra for the calculus of indications
verfasst von
Rocco Gangle
Gianluca Caterina
Fernando Tohmé
Publikationsdatum
15.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 23/2020
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-020-05121-1

Weitere Artikel der Ausgabe 23/2020

Soft Computing 23/2020 Zur Ausgabe