Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

15.02.2020

A continuous learning method for recognizing named entities by integrating domain contextual relevance measurement and Web farming mode of Web intelligence

Zeitschrift:
World Wide Web
Autoren:
Shaofu Lin, Jiangfan Gao, Shun Zhang, Xiaobo He, Ying Sheng, Jianhui Chen
Wichtige Hinweise
This article belongs to the Topical Collection: Computational Social Science as the Ultimate Web Intelligence
Guest Editors: Xiaohui Tao, Juan D. Velasquez, Jiming Liu, and Ning Zhong

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Web farming can advance computational social science into a never-end learning process, in which social phenomena are dynamically and scientifically understood based on continuously produced, updated and expired data in the connected hyper world. Named entity recognition is a basic and core task of Web farming. However, the existing named entity recognition methods mainly depend on the complete, high-quality and well-labelled data sets and cannot meet the requirements of real-world applications. This paper proposes a continuous learning method for recognizing named entity by introducing the Web farming mode of Web Intelligence into the recognizing process. During the on-line stage, the domain contextual relevance of candidate entities is calculated by using the domain discrimination degree and the domain dependence function for recognizing the target entities. During the off-line stage, an active learning approach is designed to continuously improve the target corpus set by binding density-based clustering with semantic distance measurement. Experimental results show that the proposed method can effectively improve the accuracy of entity recognition and is more suitable for real-world applications.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise