Skip to main content
Erschienen in:

11.02.2023

A Controlled Attention for Nested Named Entity Recognition

verfasst von: Yanping Chen, Rong Huang, Lijun Pan, Ruizhang Huang, Qinghua Zheng, Ping Chen

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional methods to recognize named entities are conducted as sequence labelling or span classification. They are usually implemented on a raw input without any cue about possible named entities. This method cannot be aware of entity boundaries and learn semantic dependencies between them. Cognitive neuroscience has revealed that foveating stimuli improves the efficiency of processing in terms of acuity. Inspired by this phenomenon, we propose a controlled attention mechanism for recognizing named entities. In our method, instead of feeding a raw input into a neural network, task-related cues are implanted into each sentence to indicate boundaries of possible named entities. Then, the modified sentence is sent into a deep network to learn a discriminative entity-relevant sentence representation. In our experiments, the controlled attention is evaluated on English and Chinese corpora. Comparing with existing models, it shows significant improvement for nested named entity recognition. We achieve the state-of-the-art performance in all evaluation datasets. The controlled attention has three advantages for named entity recognition. First, it enables a neural network to become aware of entity boundaries and construct semantic dependencies relevant to possible entities. Second, implanting entity cues enables a neural network to concentrate on the task-related semantic features while disregarding nonessential information in a sentence. Third, the controlled attention also has the potentiality to be extended for other NLP tasks, e.g., entity relation extraction and event extraction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Symbols in this picture are cuneiform characters, Latin transcription, and English words.
 
Literatur
1.
Zurück zum Zitat Yang S, Tu K. Bottom-up constituency parsing and nested named entity recognition with pointer networks. In: Proceedings of the ACL ’22. 2022. p. 2403–16. Yang S, Tu K. Bottom-up constituency parsing and nested named entity recognition with pointer networks. In: Proceedings of the ACL ’22. 2022. p. 2403–16.
2.
Zurück zum Zitat Katiyar A, Cardie C. Nested named entity recognition revisited. In: Proceedings of the NAACL ’18. New Orleans, Louisiana: ACL; 2018. p. 861–71. Katiyar A, Cardie C. Nested named entity recognition revisited. In: Proceedings of the NAACL ’18. New Orleans, Louisiana: ACL; 2018. p. 861–71.
3.
Zurück zum Zitat Straková J, Straka M, Hajic J. Neural architectures for nested NER through linearization. In: Proceedings of the ACL ’19. Florence, Italy: ACL; 2019. p. 5326–31. Straková J, Straka M, Hajic J. Neural architectures for nested NER through linearization. In: Proceedings of the ACL ’19. Florence, Italy: ACL; 2019. p. 5326–31.
4.
Zurück zum Zitat Lin H, Lu Y, Han X, Sun L. Sequence-to-nuggets: nested entity mention detection via anchor-region networks. In: Proceedings of the ACL ’19. Florence, Italy: ACL; 2019. p. 5182–92. Lin H, Lu Y, Han X, Sun L. Sequence-to-nuggets: nested entity mention detection via anchor-region networks. In: Proceedings of the ACL ’19. Florence, Italy: ACL; 2019. p. 5182–92.
6.
Zurück zum Zitat Yuan Z, Tan C, Huang S, Huang F. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition. In: Proceedings of the ACL ’22. 2022. p. 3174–86. Yuan Z, Tan C, Huang S, Huang F. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition. In: Proceedings of the ACL ’22. 2022. p. 3174–86.
7.
Zurück zum Zitat Lou C, Yang S, Tu K. Nested named entity recognition as latent lexicalized constituency parsing. In: Proceedings of the ACL ’22. Dublin, Ireland: Association for Computational Linguistics. 2022. p. 6183–98. Lou C, Yang S, Tu K. Nested named entity recognition as latent lexicalized constituency parsing. In: Proceedings of the ACL ’22. Dublin, Ireland: Association for Computational Linguistics. 2022. p. 6183–98.
8.
Zurück zum Zitat Zhu E, Li J. Boundary smoothing for named entity recognition. In: Proceedings of the ACL ’22. 2022. p. 7096–108. Zhu E, Li J. Boundary smoothing for named entity recognition. In: Proceedings of the ACL ’22. 2022. p. 7096–108.
9.
Zurück zum Zitat Chen Y, Wu Y, Qin Y, Hu Y, Wang Z, Huang R, Cheng X, Chen P. Recognizing nested named entity based on the neural network boundary assembling model. IEEE Intell Syst. 2020;35(1):74–81.CrossRef Chen Y, Wu Y, Qin Y, Hu Y, Wang Z, Huang R, Cheng X, Chen P. Recognizing nested named entity based on the neural network boundary assembling model. IEEE Intell Syst. 2020;35(1):74–81.CrossRef
10.
Zurück zum Zitat Chen Y, Wu L, Zheng Q, Huang R, Liu J, Deng L, Yu J, Qing Y, Dong B, Chen P. A boundary regression model for nested named entity recognition. Cogn Comput. 2022. p. 1–18. Chen Y, Wu L, Zheng Q, Huang R, Liu J, Deng L, Yu J, Qing Y, Dong B, Chen P. A boundary regression model for nested named entity recognition. Cogn Comput. 2022. p. 1–18.
11.
Zurück zum Zitat Shen Y, Ma X, Tan Z, Zhang S, Wang W, Lu W. Locate and label: a two-stage identifier for nested named entity recognition. In: Proceedings of the ACL-IJCNLP ‘21. 2021. p. 2782–94. Shen Y, Ma X, Tan Z, Zhang S, Wang W, Lu W. Locate and label: a two-stage identifier for nested named entity recognition. In: Proceedings of the ACL-IJCNLP ‘21. 2021. p. 2782–94.
12.
Zurück zum Zitat Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization. Adv Neural Inf Process Syst. 2014;27:2177–85. Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization. Adv Neural Inf Process Syst. 2014;27:2177–85.
15.
Zurück zum Zitat Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13(1):25–42.CrossRef Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13(1):25–42.CrossRef
17.
Zurück zum Zitat Namazi M, Thordardottir E. A working memory, not bilingual advantage, in controlled attention. Int J Biling Educ Biling. 2010;13(5):597–616.CrossRef Namazi M, Thordardottir E. A working memory, not bilingual advantage, in controlled attention. Int J Biling Educ Biling. 2010;13(5):597–616.CrossRef
18.
Zurück zum Zitat Zhou G, Su J. Named entity recognition using an HMM-based chunk tagger. In: Proceedings of the ACL ’02. ACL; 2002. p. 473–80. Zhou G, Su J. Named entity recognition using an HMM-based chunk tagger. In: Proceedings of the ACL ’02. ACL; 2002. p. 473–80.
19.
Zurück zum Zitat McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In: Proceedings of the HLT-NAAC ’03. ACL; 2003. p. 188–91. McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In: Proceedings of the HLT-NAAC ’03. ACL; 2003. p. 188–91.
21.
Zurück zum Zitat Alex B, Haddow B, Grover C. Recognising nested named entities in biomedical text. In: Proceedings of the BioNLP ’07. USA: ACL; 2007. p. 65–72. Alex B, Haddow B, Grover C. Recognising nested named entities in biomedical text. In: Proceedings of the BioNLP ’07. USA: ACL; 2007. p. 65–72.
22.
Zurück zum Zitat Zhang J, Shen D, Zhou G, Su J, Tan C-L. Enhancing HMM-based biomedical named entity recognition by studying special phenomena. J Biomed Inform. 2004;37(6):411–22.CrossRef Zhang J, Shen D, Zhou G, Su J, Tan C-L. Enhancing HMM-based biomedical named entity recognition by studying special phenomena. J Biomed Inform. 2004;37(6):411–22.CrossRef
23.
Zurück zum Zitat McDonald R, Crammer K, Pereira F. Flexible text segmentation with structured multilabel classification. In: Proceedings of EMNLP ’05. 2005. p. 987–94. McDonald R, Crammer K, Pereira F. Flexible text segmentation with structured multilabel classification. In: Proceedings of EMNLP ’05. 2005. p. 987–94.
24.
Zurück zum Zitat Ju M, Miwa M, Ananiadou S. A neural layered model for nested named entity recognition. In: Proceedings of the NAACL ’18. New Orleans, Louisiana: ACL; 2018. p. 1446–59. Ju M, Miwa M, Ananiadou S. A neural layered model for nested named entity recognition. In: Proceedings of the NAACL ’18. New Orleans, Louisiana: ACL; 2018. p. 1446–59.
26.
Zurück zum Zitat Wang J, Shou L, Chen K, Chen G. Pyramid: a layered model for nested named entity recognition. In: Proceedings of the ACL ’20. Online: ACL; 2020. p. 5918–28. Wang J, Shou L, Chen K, Chen G. Pyramid: a layered model for nested named entity recognition. In: Proceedings of the ACL ’20. Online: ACL; 2020. p. 5918–28.
27.
Zurück zum Zitat Lu W, Roth D. Joint mention extraction and classification with mention hypergraphs. In: Proceedings of the EMNLP ’15. Lisbon, Portugal: ACL; 2015. p. 857–67. Lu W, Roth D. Joint mention extraction and classification with mention hypergraphs. In: Proceedings of the EMNLP ’15. Lisbon, Portugal: ACL; 2015. p. 857–67.
29.
Zurück zum Zitat Finkel JR, Manning CD. Joint parsing and named entity recognition. In: Proceedings of the NAACL ’09. USA: ACL; 2009. p. 326–34. Finkel JR, Manning CD. Joint parsing and named entity recognition. In: Proceedings of the NAACL ’09. USA: ACL; 2009. p. 326–34.
30.
Zurück zum Zitat Jie Z, Muis AO, Lu W. Efficient dependency-guided named entity recognition. In: Proceedings of the AAAI ’17. AAAI Press; 2017. p. 3457–65. Jie Z, Muis AO, Lu W. Efficient dependency-guided named entity recognition. In: Proceedings of the AAAI ’17. AAAI Press; 2017. p. 3457–65.
31.
Zurück zum Zitat Jie Z, Lu W. Dependency-guided LSTM-CRF for named entity recognition. In: Proceedings of the EMNLP-IJCNLP ’19. Hong Kong, China: Association for Computational Linguistics; 2019. p. 3862–72. Jie Z, Lu W. Dependency-guided LSTM-CRF for named entity recognition. In: Proceedings of the EMNLP-IJCNLP ’19. Hong Kong, China: Association for Computational Linguistics; 2019. p. 3862–72.
33.
Zurück zum Zitat Sohrab MG, Miwa M. Deep exhaustive model for nested named entity recognition. In: Proceedings of the EMNLP ’18. Brussels, Belgium: ACL; 2018. p. 2843–9. Sohrab MG, Miwa M. Deep exhaustive model for nested named entity recognition. In: Proceedings of the EMNLP ’18. Brussels, Belgium: ACL; 2018. p. 2843–9.
34.
Zurück zum Zitat Xia C, Zhang C, Yang T, Li Y, Du N, Wu X, Fan W, Ma F, Yu P. Multi-grained named entity recognition. In: Proceedings of the ACL ’19. ACL; 2019. p. 1430–40. Xia C, Zhang C, Yang T, Li Y, Du N, Wu X, Fan W, Ma F, Yu P. Multi-grained named entity recognition. In: Proceedings of the ACL ’19. ACL; 2019. p. 1430–40.
35.
Zurück zum Zitat Yongming N, Yanping C, Yongbin Q, Ruizhang H, Ruixue T, Ying H. A joint model for entity boundary detection and entity span recognition. J King Saud Univ - Comput Inf Sci. 2022;34(10):8362–9. Yongming N, Yanping C, Yongbin Q, Ruizhang H, Ruixue T, Ying H. A joint model for entity boundary detection and entity span recognition. J King Saud Univ - Comput Inf Sci. 2022;34(10):8362–9.
36.
Zurück zum Zitat Li X, Feng J, Meng Y, Han Q, Wu F, Li J. A unified MRC framework for named entity recognition. In: Proceedings of the ACL-20. 2020. p. 5849–58. Li X, Feng J, Meng Y, Han Q, Wu F, Li J. A unified MRC framework for named entity recognition. In: Proceedings of the ACL-20. 2020. p. 5849–58.
37.
Zurück zum Zitat Li J, Fei H, Liu J, Wu S, Zhang M, Teng C, Ji D, Li F. Unified named entity recognition as word-word relation classification. In: Proceedings of the AAAI ‘22, vol. 36, no. 10. 2022. p. 10965–73. Li J, Fei H, Liu J, Wu S, Zhang M, Teng C, Ji D, Li F. Unified named entity recognition as word-word relation classification. In: Proceedings of the AAAI ‘22, vol. 36, no. 10. 2022. p. 10965–73.
38.
Zurück zum Zitat Wu D, Luo X, He Y, Zhou M. A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data. IEEE Trans Neural Netw Learn Syst. 2022. Wu D, Luo X, He Y, Zhou M. A prediction-sampling-based multilayer-structured latent factor model for accurate representation to high-dimensional and sparse data. IEEE Trans Neural Netw Learn Syst. 2022.
39.
Zurück zum Zitat Li J, Chiu B, Feng S, Wang H. Few-shot named entity recognition via meta-learning. IEEE Trans Knowl Data Eng. 2020. Li J, Chiu B, Feng S, Wang H. Few-shot named entity recognition via meta-learning. IEEE Trans Knowl Data Eng. 2020.
40.
Zurück zum Zitat Li J, Shang S, Chen L. Domain generalization for named entity boundary detection via metalearning. IEEE Trans Neural Netw Learn Syst. 2020;32(9):3819–30.CrossRef Li J, Shang S, Chen L. Domain generalization for named entity boundary detection via metalearning. IEEE Trans Neural Netw Learn Syst. 2020;32(9):3819–30.CrossRef
41.
Zurück zum Zitat Yu J, Bohnet B, Poesio M. Named entity recognition as dependency parsing. Meeting of the Association for Computational Linguistics; 2020. Yu J, Bohnet B, Poesio M. Named entity recognition as dependency parsing. Meeting of the Association for Computational Linguistics; 2020.
42.
Zurück zum Zitat Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L. Grass: generative recursive autoencoders for shape structures. ACM Trans Graph. 2017;36(4):1–14. Li J, Xu K, Chaudhuri S, Yumer E, Zhang H, Guibas L. Grass: generative recursive autoencoders for shape structures. ACM Trans Graph. 2017;36(4):1–14.
43.
Zurück zum Zitat Shi Y, Xu X, Xi J, Hu X, Hu D, Xu K. Learning to detect 3D symmetry from single-view RGB-D images with weak supervision. IEEE Trans Pattern Anal Mach Intell. 2022. Shi Y, Xu X, Xi J, Hu X, Hu D, Xu K. Learning to detect 3D symmetry from single-view RGB-D images with weak supervision. IEEE Trans Pattern Anal Mach Intell. 2022.
44.
Zurück zum Zitat Li J, Han P, Ren X, Hu J, Chen L, Shang S. Sequence labeling with meta-learning. IEEE Trans Knowl Data Eng. 2021. Li J, Han P, Ren X, Hu J, Chen L, Shang S. Sequence labeling with meta-learning. IEEE Trans Knowl Data Eng. 2021.
46.
Zurück zum Zitat Strubell E, Verga P, Belanger D, McCallum A. Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the EMNLP ’17. Copenhagen, Denmark: Association for Computational Linguistics; 2017. p. 2670–80. Strubell E, Verga P, Belanger D, McCallum A. Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the EMNLP ’17. Copenhagen, Denmark: Association for Computational Linguistics; 2017. p. 2670–80.
47.
Zurück zum Zitat Galassi A, Lippi M, Torroni P. Attention in natural language processing. IEEE Trans Neural Netw. 2020;1–18. Galassi A, Lippi M, Torroni P. Attention in natural language processing. IEEE Trans Neural Netw. 2020;1–18.
48.
Zurück zum Zitat Zhu Y, Wang G. CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition. In: Proceedings of the NAACL-HLT ’19. Minneapolis, Minnesota: Association for Computational Linguistics. 2019. p. 3384–93. Zhu Y, Wang G. CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition. In: Proceedings of the NAACL-HLT ’19. Minneapolis, Minnesota: Association for Computational Linguistics. 2019. p. 3384–93.
49.
Zurück zum Zitat Luo G, Yuan Q, Li J, Wang S, Yang F. Artificial intelligence powered mobile networks: from cognition to decision. IEEE Network. 2022;36(3):136–44.CrossRef Luo G, Yuan Q, Li J, Wang S, Yang F. Artificial intelligence powered mobile networks: from cognition to decision. IEEE Network. 2022;36(3):136–44.CrossRef
52.
Zurück zum Zitat Muis AO, Lu W. Labeling gaps between words: recognizing overlapping mentions with mention separators. In: Proceedings of the EMNLP ’17. 2017. p. 2608–18. Muis AO, Lu W. Labeling gaps between words: recognizing overlapping mentions with mention separators. In: Proceedings of the EMNLP ’17. 2017. p. 2608–18.
54.
Zurück zum Zitat Zheng C, Cai Y, Xu J, Leung H-F, Xu G. A boundary-aware neural model for nested named entity recognition. In: Proceedings of the EMNLP-IJCNLP ‘19. 2019. p. 357–66. Zheng C, Cai Y, Xu J, Leung H-F, Xu G. A boundary-aware neural model for nested named entity recognition. In: Proceedings of the EMNLP-IJCNLP ‘19. 2019. p. 357–66.
55.
Zurück zum Zitat Shibuya T, Hovy EH. Nested named entity recognition via second-best sequence learning and decoding. Trans Assoc Comput Linguist. 2020;8:605–20.CrossRef Shibuya T, Hovy EH. Nested named entity recognition via second-best sequence learning and decoding. Trans Assoc Comput Linguist. 2020;8:605–20.CrossRef
56.
Zurück zum Zitat Tan C, Qiu W, Chen M, Wang R, Huang F. Boundary enhanced neural span classification for nested named entity recognition. In: Proceedings of the AAAI ‘20, vol. 34, no. 05. 2020. p. 9016–23. Tan C, Qiu W, Chen M, Wang R, Huang F. Boundary enhanced neural span classification for nested named entity recognition. In: Proceedings of the AAAI ‘20, vol. 34, no. 05. 2020. p. 9016–23.
57.
Zurück zum Zitat Doddington G, Mitchell A, Przybocki M, Ramshaw L, Strassel S, Weischedel R. The automatic content extraction (ACE) program – tasks, data, and evaluation. In: Proceedings of the LREC ’04. Lisbon, Portugal: European Language Resources Association (ELRA). 2004. Doddington G, Mitchell A, Przybocki M, Ramshaw L, Strassel S, Weischedel R. The automatic content extraction (ACE) program – tasks, data, and evaluation. In: Proceedings of the LREC ’04. Lisbon, Portugal: European Language Resources Association (ELRA). 2004.
58.
Zurück zum Zitat Kim J-D, Ohta T, Tateisi Y, Tsujii J. Genia corpus-a semantically annotated corpus for bio-textmining. Bioinformatics (Oxford, England). 2003;19(Suppl 1):i180-2. Kim J-D, Ohta T, Tateisi Y, Tsujii J. Genia corpus-a semantically annotated corpus for bio-textmining. Bioinformatics (Oxford, England). 2003;19(Suppl 1):i180-2.
59.
Zurück zum Zitat Finkel JR, Manning CD. Nested named entity recognition. In: Proceedings of the EMNLP ’09. 2009. p. 141. Finkel JR, Manning CD. Nested named entity recognition. In: Proceedings of the EMNLP ’09. 2009. p. 141.
60.
Zurück zum Zitat Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2019.
61.
63.
Zurück zum Zitat Chen Y, Zheng Q, Chen P. A boundary assembling method for chinese entity-mention recognition. IEEE Intell Syst. 2015;30(6):50–8.CrossRef Chen Y, Zheng Q, Chen P. A boundary assembling method for chinese entity-mention recognition. IEEE Intell Syst. 2015;30(6):50–8.CrossRef
Metadaten
Titel
A Controlled Attention for Nested Named Entity Recognition
verfasst von
Yanping Chen
Rong Huang
Lijun Pan
Ruizhang Huang
Qinghua Zheng
Ping Chen
Publikationsdatum
11.02.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10112-z