Skip to main content

2018 | OriginalPaper | Buchkapitel

10. A Cortico-Basal Ganglia Model to Understand the Neural Dynamics of Targeted Reaching in Normal and Parkinson’s Conditions

verfasst von : Vignesh Muralidharan, Alekhya Mandali, Pragathi Priyadharsini Balasubramani, Hima Mehta, V. Srinivasa Chakravarthy, Marjan Jahanshahi

Erschienen in: Computational Neuroscience Models of the Basal Ganglia

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a cortico-basal ganglia model to study the neural mechanisms behind reaching movements in normal and in Parkinson’s disease conditions. The model consists of the following components: a two-joint arm model (AM), a layer of motor neurons in the spinal cord (MN), the proprioceptive cortex (PC), the motor cortex (MC), the prefrontal cortex (PFC), and the basal ganglia (BG). The model thus has an outer sensory-motor cortical loop and an inner cortico-basal ganglia loop to drive learning of reaching behavior. Sensory and motor maps are formed by the PC and MC which represent the space of arm configurations. The BG sends control signals to the MC following a stochastic gradient ascent policy applied to the value function defined over the arm configuration space. The trainable connections from PFC to MC can directly activate the motor cortex, thereby producing rapid movement avoiding the slow search conducted by the BG. The model captures the two main stages of motor learning, i.e., slow movements dominated by the BG during early stages and cortically driven fast movements with smoother trajectories at later stages. The model explains PD performance in stationary and pursuit reaching tasks. The model also shows that PD symptoms like tremor and rigidity could be attributed to synchronized oscillations in STN–GPe. The model is in line with closed-loop control and with neural representations for all the nuclei which explains Parkinsonian reaching. By virtue of its ability to capture the role of cortico-basal ganglia systems in controlling a wide range of features of reaching, the proposed model can potentially serve as a benchmark to test various motor pathologies of the BG.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1991). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146.CrossRef Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1991). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146.CrossRef
Zurück zum Zitat Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215.CrossRef Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215.CrossRef
Zurück zum Zitat Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507–512.CrossRef Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507–512.CrossRef
Zurück zum Zitat Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Frontiers in Computational Neuroscience, 8, 47.CrossRef Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Frontiers in Computational Neuroscience, 8, 47.CrossRef
Zurück zum Zitat Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.CrossRef Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.CrossRef
Zurück zum Zitat Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders. Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders.
Zurück zum Zitat Castiello, U., Bennett, K., Bonfiglioli, C., & Peppard, R. (2000). The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia, 38(1), 46–59.CrossRef Castiello, U., Bennett, K., Bonfiglioli, C., & Peppard, R. (2000). The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia, 38(1), 46–59.CrossRef
Zurück zum Zitat Chakravarthy, V. S. (2013). Do basal Ganglia amplify willed action by stochastic resonance? A model. PloS one, 8(11), e75657.CrossRef Chakravarthy, V. S. (2013). Do basal Ganglia amplify willed action by stochastic resonance? A model. PloS one, 8(11), e75657.CrossRef
Zurück zum Zitat Chakravarthy, V. S., & Balasubramani, P. P. (2015). Basal ganglia system as an engine for exploration. Encyclopedia of Computational Neuroscience, 315–327. Chakravarthy, V. S., & Balasubramani, P. P. (2015). Basal ganglia system as an engine for exploration. Encyclopedia of Computational Neuroscience, 315–327.
Zurück zum Zitat Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological cybernetics, 103(3), 237–253.MathSciNetCrossRefMATH
Zurück zum Zitat Chen, Y., & Reggia, J. A. (1996). Alignment of coexisting cortical maps in a motor control model. Neural Computation, 8(4), 731–755.CrossRef Chen, Y., & Reggia, J. A. (1996). Alignment of coexisting cortical maps in a motor control model. Neural Computation, 8(4), 731–755.CrossRef
Zurück zum Zitat Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7), 961–974.CrossRef Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7), 961–974.CrossRef
Zurück zum Zitat Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381.CrossRef Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381.CrossRef
Zurück zum Zitat Georgopoulos, A. P., Kalaska, J. F., & Massey, J. T. (1981). Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology, 46(4), 725–743.CrossRef Georgopoulos, A. P., Kalaska, J. F., & Massey, J. T. (1981). Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology, 46(4), 725–743.CrossRef
Zurück zum Zitat Gupta, A., Balasubramani, P. P., & Chakravarthy, S. (2013). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in computational neuroscience, 7, 172.CrossRef Gupta, A., Balasubramani, P. P., & Chakravarthy, S. (2013). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in computational neuroscience, 7, 172.CrossRef
Zurück zum Zitat Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRef
Zurück zum Zitat Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.CrossRef Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.CrossRef
Zurück zum Zitat Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.CrossRef Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.CrossRef
Zurück zum Zitat Izawa, J., Kondo, T., & Ito, K. (2004). Biological arm motion through reinforcement learning. Biological Cybernetics, 91(1), 10–22.CrossRefMATH Izawa, J., Kondo, T., & Ito, K. (2004). Biological arm motion through reinforcement learning. Biological Cybernetics, 91(1), 10–22.CrossRefMATH
Zurück zum Zitat Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.CrossRef Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.CrossRef
Zurück zum Zitat Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRef Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRef
Zurück zum Zitat Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.CrossRef Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.CrossRef
Zurück zum Zitat Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.CrossRef Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.CrossRef
Zurück zum Zitat Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.CrossRef Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.CrossRef
Zurück zum Zitat Magdoom, K., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S.-I., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefMATH Magdoom, K., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S.-I., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefMATH
Zurück zum Zitat Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755–766.CrossRef Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755–766.CrossRef
Zurück zum Zitat Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.CrossRef Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.CrossRef
Zurück zum Zitat Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301(5630), 229–232.CrossRef Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301(5630), 229–232.CrossRef
Zurück zum Zitat Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227.CrossRef Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227.CrossRef
Zurück zum Zitat Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2013). A computational model of altered gait patterns in Parkinson’s disease patients negotiating narrow doorways. Frontiers in Computational Neuroscience, 7. Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2013). A computational model of altered gait patterns in Parkinson’s disease patients negotiating narrow doorways. Frontiers in Computational Neuroscience, 7.
Zurück zum Zitat Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.CrossRef Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.CrossRef
Zurück zum Zitat Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433(7028), 873–876.CrossRef Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433(7028), 873–876.CrossRef
Zurück zum Zitat Plamondon, R. (1998). A kinematic theory of rapid human movements: Part III. Kinetic outcomes. Biological Cybernetics, 78(2), 133–145.CrossRefMATH Plamondon, R. (1998). A kinematic theory of rapid human movements: Part III. Kinetic outcomes. Biological Cybernetics, 78(2), 133–145.CrossRefMATH
Zurück zum Zitat Pouget, S. D. A., & Latham, P. (1999). Divisive normalization, line attractor networks and ideal observers. Paper presented at the Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference. Pouget, S. D. A., & Latham, P. (1999). Divisive normalization, line attractor networks and ideal observers. Paper presented at the Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference.
Zurück zum Zitat Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.CrossRef Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.CrossRef
Zurück zum Zitat Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.CrossRef Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.CrossRef
Zurück zum Zitat Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain, 120(8), 1325–1337.CrossRef Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain, 120(8), 1325–1337.CrossRef
Zurück zum Zitat Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.CrossRef Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.CrossRef
Zurück zum Zitat Trappenberg, T. (2003). Continuous attractor neural networks. In Recent developments in biologically inspired computing (pp. 398–425). Trappenberg, T. (2003). Continuous attractor neural networks. In Recent developments in biologically inspired computing (pp. 398–425).
Zurück zum Zitat Weinberger, M., Hutchison, W. D., & Dostrovsky, J. O. (2009). Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Experimental Neurology, 219(1), 58–61.CrossRef Weinberger, M., Hutchison, W. D., & Dostrovsky, J. O. (2009). Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Experimental Neurology, 219(1), 58–61.CrossRef
Zurück zum Zitat Zaidel, A., Spivak, A., Grieb, B., Bergman, H., & Israel, Z. (2010). Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain, awq144. Zaidel, A., Spivak, A., Grieb, B., Bergman, H., & Israel, Z. (2010). Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain, awq144.
Zurück zum Zitat Ziemann, U., Tergau, F., Bruns, D., Baudewig, J., & Paulus, W. (1997). Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(6), 430–437. Ziemann, U., Tergau, F., Bruns, D., Baudewig, J., & Paulus, W. (1997). Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(6), 430–437.
Metadaten
Titel
A Cortico-Basal Ganglia Model to Understand the Neural Dynamics of Targeted Reaching in Normal and Parkinson’s Conditions
verfasst von
Vignesh Muralidharan
Alekhya Mandali
Pragathi Priyadharsini Balasubramani
Hima Mehta
V. Srinivasa Chakravarthy
Marjan Jahanshahi
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8494-2_10

Neuer Inhalt