Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 1/2016

05.03.2015 | Original Paper

A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

verfasst von: Jorge Castro, Sergio Cicero, César Sagaseta

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (σ c/σ t = 3–50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77:2200–2210CrossRef Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77:2200–2210CrossRef
Zurück zum Zitat Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45:65–74CrossRef Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45:65–74CrossRef
Zurück zum Zitat Anderson TL (2004) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Florida Anderson TL (2004) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Florida
Zurück zum Zitat Ayatollahi MR, Akbardoost J (2013) Size effects in mode II brittle fracture of rocks. Eng Fract Mech 112–113:165–180CrossRef Ayatollahi MR, Akbardoost J (2013) Size effects in mode II brittle fracture of rocks. Eng Fract Mech 112–113:165–180CrossRef
Zurück zum Zitat Bao Y, Jin Z (1993) Size effects and mean strength criterion for ceramics. Fatigue Fract Eng Materials Struct 16:829–835CrossRef Bao Y, Jin Z (1993) Size effects and mean strength criterion for ceramics. Fatigue Fract Eng Materials Struct 16:829–835CrossRef
Zurück zum Zitat Baud P, T-f Wong, Zhu W (2014) Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 67:202–211 Baud P, T-f Wong, Zhu W (2014) Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 67:202–211
Zurück zum Zitat Bažant ZP (2002) Concrete fracture models: testing and practice. Eng Fract Mech 69(2):165–205CrossRef Bažant ZP (2002) Concrete fracture models: testing and practice. Eng Fract Mech 69(2):165–205CrossRef
Zurück zum Zitat Bieniawski ZT (1967) Mechanism of brittle fracture of rock. Part II––experimental studies. Int J Rock Mech Min Sci 4(4):407–423CrossRef Bieniawski ZT (1967) Mechanism of brittle fracture of rock. Part II––experimental studies. Int J Rock Mech Min Sci 4(4):407–423CrossRef
Zurück zum Zitat Bishop AW, Garga VK (1969) Drained tension tests on London clay. Geotechnique 19(2):309–313CrossRef Bishop AW, Garga VK (1969) Drained tension tests on London clay. Geotechnique 19(2):309–313CrossRef
Zurück zum Zitat Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219CrossRef Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219CrossRef
Zurück zum Zitat Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRef Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888CrossRef
Zurück zum Zitat Brace WF (1964) Brittle fracture of rocks. In: Judd WR (ed) State of stress in the Earth’s crust. Elsevier, New York, pp 111–174 Brace WF (1964) Brittle fracture of rocks. In: Judd WR (ed) State of stress in the Earth’s crust. Elsevier, New York, pp 111–174
Zurück zum Zitat Cai M (2010) Practical estimates of tensile strength and Hoek-Brown strength parameter m i of brittle rocks. Rock Mech Rock Eng 43:167–184CrossRef Cai M (2010) Practical estimates of tensile strength and Hoek-Brown strength parameter m i of brittle rocks. Rock Mech Rock Eng 43:167–184CrossRef
Zurück zum Zitat Carter BJ, Scott Duncan EJ, Lajtai EZ (1991) Fitting strength criteria to intact rock. Geotech Geol Eng 9:73–81CrossRef Carter BJ, Scott Duncan EJ, Lajtai EZ (1991) Fitting strength criteria to intact rock. Geotech Geol Eng 9:73–81CrossRef
Zurück zum Zitat Chang KJ (1981) Further studies of the maximum stress criterion on the angled crack problem. Eng Fract Mech 14:125–142CrossRef Chang KJ (1981) Further studies of the maximum stress criterion on the angled crack problem. Eng Fract Mech 14:125–142CrossRef
Zurück zum Zitat Chen Y (2008) Observation of microcracks patterns in westerly granite specimens stressed immediately before failure by uniaxial compressive loading. Chin J Rock Mech Eng 27(12):2240–2248 Chen Y (2008) Observation of microcracks patterns in westerly granite specimens stressed immediately before failure by uniaxial compressive loading. Chin J Rock Mech Eng 27(12):2240–2248
Zurück zum Zitat Cicero S, Madrazo V, Carrascal IA (2012) Analysis of notch effect in PMMA by using the theory of critical distances. Eng Fract Mech 86:56–72CrossRef Cicero S, Madrazo V, Carrascal IA (2012) Analysis of notch effect in PMMA by using the theory of critical distances. Eng Fract Mech 86:56–72CrossRef
Zurück zum Zitat Cicero S, Madrazo V, García T, Cuervo J, Ruiz E (2013) On the notch effect in load bearing capacity, apparent fracture toughness and fracture mechanisms of polymer PMMA, aluminium alloy Al7075-T651 and structural steels S275JR and S355J2. Eng Fail Anal 29:108–121CrossRef Cicero S, Madrazo V, García T, Cuervo J, Ruiz E (2013) On the notch effect in load bearing capacity, apparent fracture toughness and fracture mechanisms of polymer PMMA, aluminium alloy Al7075-T651 and structural steels S275JR and S355J2. Eng Fail Anal 29:108–121CrossRef
Zurück zum Zitat Cicero S, García T, Castro J, Madrazo V, Andrés D (2014) Analysis of notch effect in the fracture behaviour of granite and limestone: an approach from the theory of critical distances. Eng Geol 177:1–9CrossRef Cicero S, García T, Castro J, Madrazo V, Andrés D (2014) Analysis of notch effect in the fracture behaviour of granite and limestone: an approach from the theory of critical distances. Eng Geol 177:1–9CrossRef
Zurück zum Zitat Cotterell B (1965) On brittle failure paths. Int J Fract Mech 1:96–103 Cotterell B (1965) On brittle failure paths. Int J Fract Mech 1:96–103
Zurück zum Zitat Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16:155–169CrossRef Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16:155–169CrossRef
Zurück zum Zitat Dempsey JP, Adamson RM, Mulmule SV (1999) Scale effect on the in situ tensile strength and failure of ice. Part II: first-year sea ice at Resolute, N.W.T. Int J Fract 95:347–366CrossRef Dempsey JP, Adamson RM, Mulmule SV (1999) Scale effect on the in situ tensile strength and failure of ice. Part II: first-year sea ice at Resolute, N.W.T. Int J Fract 95:347–366CrossRef
Zurück zum Zitat Dyskin AV (1997) Crack growth criteria incorporating non-singular stresses: size effect in apparent fracture toughness. Int J Fract 83:191–206CrossRef Dyskin AV (1997) Crack growth criteria incorporating non-singular stresses: size effect in apparent fracture toughness. Int J Fract 83:191–206CrossRef
Zurück zum Zitat Eberhardt E, Stead D, Stimpson B (1999) Effects of sample disturbance on the stress-induced microfracturing characteristics of brittle rock. Can Geotech J 36:239–250CrossRef Eberhardt E, Stead D, Stimpson B (1999) Effects of sample disturbance on the stress-induced microfracturing characteristics of brittle rock. Can Geotech J 36:239–250CrossRef
Zurück zum Zitat Elices M, Planas J, Guinea GV (2000) Fracture mechanics applied to concrete. In: Fuentes et al (eds) European Structural Integrity Society, vol 26. Elsevier, Amsterdam, pp 183–210 Elices M, Planas J, Guinea GV (2000) Fracture mechanics applied to concrete. In: Fuentes et al (eds) European Structural Integrity Society, vol 26. Elsevier, Amsterdam, pp 183–210
Zurück zum Zitat Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. ASME J Basic Eng 85(4):519–527CrossRef Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. ASME J Basic Eng 85(4):519–527CrossRef
Zurück zum Zitat Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans Royal Soc Lond Ser A 221:163–198CrossRef Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans Royal Soc Lond Ser A 221:163–198CrossRef
Zurück zum Zitat Griffith AA (1924) Theory of rupture. In: Bienzano CB, Burgers JM (eds). In: Proceedings of 1st International Congress on Applied Mechanics, Delft, pp 55–63 Griffith AA (1924) Theory of rupture. In: Bienzano CB, Burgers JM (eds). In: Proceedings of 1st International Congress on Applied Mechanics, Delft, pp 55–63
Zurück zum Zitat Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37:285–296CrossRef Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37:285–296CrossRef
Zurück zum Zitat Hatzor YH, Zur A, Mimran Y (1997) Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics 281:141–161CrossRef Hatzor YH, Zur A, Mimran Y (1997) Microstructure effects on microcracking and brittle failure of dolomites. Tectonophysics 281:141–161CrossRef
Zurück zum Zitat Hoek E (1965) Rock fracture under static stress conditions. PhD Thesis, University of Cape Town Hoek E (1965) Rock fracture under static stress conditions. PhD Thesis, University of Cape Town
Zurück zum Zitat Hoek E (1968) Brittle failure of rock. In: Stagg KG, Zienkiewicz OC (eds) Rock Mechanics in Engineering Practice. Wiley, New york, pp 99–124 Hoek E (1968) Brittle failure of rock. In: Stagg KG, Zienkiewicz OC (eds) Rock Mechanics in Engineering Practice. Wiley, New york, pp 99–124
Zurück zum Zitat Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9):1013–1135 Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9):1013–1135
Zurück zum Zitat Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186CrossRef Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186CrossRef
Zurück zum Zitat Hopkins TW (1986) Microfracturing in Westerly granite experimentally extended wet and dry at temperatures to 800° C and pressures to 200 MPa. MSc Thesis, Texas A&M University Hopkins TW (1986) Microfracturing in Westerly granite experimentally extended wet and dry at temperatures to 800° C and pressures to 200 MPa. MSc Thesis, Texas A&M University
Zurück zum Zitat Inglis CE (1913) Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Naval Architect 55(Part I):219–230 Inglis CE (1913) Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Naval Architect 55(Part I):219–230
Zurück zum Zitat Ingraffea AR, Heuzé FE (1980) Finite element models for rock fracture mechanics. Int J Num Anal Methods Geomech 4:25–43CrossRef Ingraffea AR, Heuzé FE (1980) Finite element models for rock fracture mechanics. Int J Num Anal Methods Geomech 4:25–43CrossRef
Zurück zum Zitat Ito T (2008) Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: rock. Eng Fract Mech 75:1753–1762CrossRef Ito T (2008) Effect of pore pressure gradient on fracture initiation in fluid saturated porous media: rock. Eng Fract Mech 75:1753–1762CrossRef
Zurück zum Zitat Ito T, Hayasi K (1991) Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. Int J Rock Mech Min Sci 28:285–293CrossRef Ito T, Hayasi K (1991) Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. Int J Rock Mech Min Sci 28:285–293CrossRef
Zurück zum Zitat Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci 4(2):219–227CrossRef Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci 4(2):219–227CrossRef
Zurück zum Zitat Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Oxford Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Oxford
Zurück zum Zitat Johnston IW (1985) Strength of intact geomechanical materials. J Geotech Eng ASCE 111(6):730–749CrossRef Johnston IW (1985) Strength of intact geomechanical materials. J Geotech Eng ASCE 111(6):730–749CrossRef
Zurück zum Zitat Johnston IW, Chiu HK (1984) Strength of weathered melbourne mudstone. J Geotech Eng ASCE 110(7):875–898CrossRef Johnston IW, Chiu HK (1984) Strength of weathered melbourne mudstone. J Geotech Eng ASCE 110(7):875–898CrossRef
Zurück zum Zitat Karihaloo BL, Carpinteri A, Elices M (1993) Fracture mechanics of cement mortar and plain concrete. Adv Cem Based Mater 1(2):92–105CrossRef Karihaloo BL, Carpinteri A, Elices M (1993) Fracture mechanics of cement mortar and plain concrete. Adv Cem Based Mater 1(2):92–105CrossRef
Zurück zum Zitat Kemeny JM (1991) A model for non-linear rock deformation under compression due to sub-critical crack growth. Int J Rock Mech Min Sci 28(6):459–467CrossRef Kemeny JM (1991) A model for non-linear rock deformation under compression due to sub-critical crack growth. Int J Rock Mech Min Sci 28(6):459–467CrossRef
Zurück zum Zitat Lajtai EZ (1972) Effect of tensile stress gradient on brittle fracture initiation. Int J Rock Mech Min Sci 9(5):569–578CrossRef Lajtai EZ (1972) Effect of tensile stress gradient on brittle fracture initiation. Int J Rock Mech Min Sci 9(5):569–578CrossRef
Zurück zum Zitat Li S, Lajtai EZ (1998) Modeling the stress-strain diagram for brittle rock loaded in compression. Mech Mater 30:243–251CrossRef Li S, Lajtai EZ (1998) Modeling the stress-strain diagram for brittle rock loaded in compression. Mech Mater 30:243–251CrossRef
Zurück zum Zitat Madrazo V, Cicero S (2012) Carrascal IA (2012) On the point method and the line method notch effect predictions in Al7075-T651. Eng Fract Mech 79:363–379CrossRef Madrazo V, Cicero S (2012) Carrascal IA (2012) On the point method and the line method notch effect predictions in Al7075-T651. Eng Fract Mech 79:363–379CrossRef
Zurück zum Zitat Maugis D (1992) Stresses and displacements around cracks and elliptic cavities—exact solutions. Eng Fract Mech 43:217–255CrossRef Maugis D (1992) Stresses and displacements around cracks and elliptic cavities—exact solutions. Eng Fract Mech 43:217–255CrossRef
Zurück zum Zitat Medhurst TP, Brown ET (1998) A study of the mechanical behaviour of coal for pillar design. Int J Rock Mech Min Sci 35(8):1087–1105CrossRef Medhurst TP, Brown ET (1998) A study of the mechanical behaviour of coal for pillar design. Int J Rock Mech Min Sci 35(8):1087–1105CrossRef
Zurück zum Zitat Nasseri MHB, Tatone BSA, Grasselli G, Young RP (2009) Fracture toughness and fracture roughness interrelationship in thermally treated Westerly granite. Pure Appl Geophys 166:801–822CrossRef Nasseri MHB, Tatone BSA, Grasselli G, Young RP (2009) Fracture toughness and fracture roughness interrelationship in thermally treated Westerly granite. Pure Appl Geophys 166:801–822CrossRef
Zurück zum Zitat Neuber H (1958) Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material. Springer Verlag, Berlin Neuber H (1958) Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material. Springer Verlag, Berlin
Zurück zum Zitat Nicksiar M, Martin CD (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng Geol 154:64–76CrossRef Nicksiar M, Martin CD (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng Geol 154:64–76CrossRef
Zurück zum Zitat Nicksiar M, Martin CD (2014) Factors affecting crack initiation in low porosity crystalline rocks. Rock Mech Rock Eng 47:1165–1181CrossRef Nicksiar M, Martin CD (2014) Factors affecting crack initiation in low porosity crystalline rocks. Rock Mech Rock Eng 47:1165–1181CrossRef
Zurück zum Zitat Paterson MS, Wong T-f (2005) Experimental rock deformation—the brittle field. Springer Verlag, Berlin Paterson MS, Wong T-f (2005) Experimental rock deformation—the brittle field. Springer Verlag, Berlin
Zurück zum Zitat Peterson RE (1959) Notch sensitivity. In: Sines G, Waisman JL (eds) Metal fatigue. McGraw Hill, New York, pp 293–306 Peterson RE (1959) Notch sensitivity. In: Sines G, Waisman JL (eds) Metal fatigue. McGraw Hill, New York, pp 293–306
Zurück zum Zitat Pluvinage G (1998) Fatigue and fracture emanating from notch; the use of the notch stress intensity factor. Nuclear Eng Design 185:173–184CrossRef Pluvinage G (1998) Fatigue and fracture emanating from notch; the use of the notch stress intensity factor. Nuclear Eng Design 185:173–184CrossRef
Zurück zum Zitat Pugno N, Ruoff R (2004) Quantized fracture mechanics. Phil Mag 84:2829–2845CrossRef Pugno N, Ruoff R (2004) Quantized fracture mechanics. Phil Mag 84:2829–2845CrossRef
Zurück zum Zitat Shen B, Stephansson O (1993) Numerical-analysis of mixed mode-I and mode-II fracture propagation. Int J Rock Mech Min Sci 30:861–867CrossRef Shen B, Stephansson O (1993) Numerical-analysis of mixed mode-I and mode-II fracture propagation. Int J Rock Mech Min Sci 30:861–867CrossRef
Zurück zum Zitat Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatigue Fract Eng Mater Struct 24:137–150CrossRef Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading. Fatigue Fract Eng Mater Struct 24:137–150CrossRef
Zurück zum Zitat Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc Royal Soc Ser A 187(1009):229–260CrossRef Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc Royal Soc Ser A 187(1009):229–260CrossRef
Zurück zum Zitat Susmel L, Taylor D (2008) On the use of the Theory of Critical Distances to predict failures in ductile metallic materials containing different geometrical features. Eng Fract Mech 75:4410–4421CrossRef Susmel L, Taylor D (2008) On the use of the Theory of Critical Distances to predict failures in ductile metallic materials containing different geometrical features. Eng Fract Mech 75:4410–4421CrossRef
Zurück zum Zitat Susmel L, Taylor D (2010) An elasto-plastic reformulation of the Theory of Critical Distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime. J Eng Mater Tech Trans ASME 132:0210021–0210028CrossRef Susmel L, Taylor D (2010) An elasto-plastic reformulation of the Theory of Critical Distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime. J Eng Mater Tech Trans ASME 132:0210021–0210028CrossRef
Zurück zum Zitat Tandon RS, Gupta V (2013) The control of mineral constituents and textural characteristics on the petrophysical and mechanical (PM) properties of different rocks of the Himalaya. Eng Geol 153:125–143CrossRef Tandon RS, Gupta V (2013) The control of mineral constituents and textural characteristics on the petrophysical and mechanical (PM) properties of different rocks of the Himalaya. Eng Geol 153:125–143CrossRef
Zurück zum Zitat Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. Elsevier Science, Oxford Taylor D (2007) The theory of critical distances: a new perspective in fracture mechanics. Elsevier Science, Oxford
Zurück zum Zitat Taylor D, Wang G (2000) The validation of some methods of notch fatigue analysis. Fatigue Fract Eng Mater Struct 23:387–394CrossRef Taylor D, Wang G (2000) The validation of some methods of notch fatigue analysis. Fatigue Fract Eng Mater Struct 23:387–394CrossRef
Zurück zum Zitat Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51(4):303–317CrossRef Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51(4):303–317CrossRef
Zurück zum Zitat Usami S, Kimoto H, Takahashi I, Shida S (1986) Strength of ceramic materials containing small flaws. Eng Fract Mech 23:745–761CrossRef Usami S, Kimoto H, Takahashi I, Shida S (1986) Strength of ceramic materials containing small flaws. Eng Fract Mech 23:745–761CrossRef
Zurück zum Zitat Vernik L, Bruno M, Bovberg C (1993) Empirical relations between compressive strength and porosity of siliciclastic rocks. Int J Rock Mech Min Sci 30(7):677–680CrossRef Vernik L, Bruno M, Bovberg C (1993) Empirical relations between compressive strength and porosity of siliciclastic rocks. Int J Rock Mech Min Sci 30(7):677–680CrossRef
Zurück zum Zitat Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24(1):109–114 Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24(1):109–114
Zurück zum Zitat Williams JG, Ewing PD (1972) Fracture under complex stress—the angled crack problems. Int J Fract 8:441–446 Williams JG, Ewing PD (1972) Fracture under complex stress—the angled crack problems. Int J Fract 8:441–446
Zurück zum Zitat Wilshaw TR, Rau CA, Tetelman AS (1968) A general model to predict the elastic-plastic stress distribution and fracture strength of notched bars in plane strain bending. Eng Fract Mech 1:191–211CrossRef Wilshaw TR, Rau CA, Tetelman AS (1968) A general model to predict the elastic-plastic stress distribution and fracture strength of notched bars in plane strain bending. Eng Fract Mech 1:191–211CrossRef
Zurück zum Zitat Wong RHC, Chau KT, Wang P (1996) Microcracking and grain size effect in Yuen Long marbles. Int J Rock Mech Min Sci 33(5):479–485CrossRef Wong RHC, Chau KT, Wang P (1996) Microcracking and grain size effect in Yuen Long marbles. Int J Rock Mech Min Sci 33(5):479–485CrossRef
Zurück zum Zitat Wu Z, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53CrossRef Wu Z, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39:38–53CrossRef
Zurück zum Zitat Yokobori T, Konosu S (1977) Effects of ferrite grain size, notch acuity and notch length on brittle fracture stress of notched specimens of low carbon steel. Eng Fract Mech 8:397–409CrossRef Yokobori T, Konosu S (1977) Effects of ferrite grain size, notch acuity and notch length on brittle fracture stress of notched specimens of low carbon steel. Eng Fract Mech 8:397–409CrossRef
Zurück zum Zitat Zhou S, Guo S (2009) Two-parameter criterion for crack growth under compressive loading. Int J Rock Mech Min Sci 46:1389–1393CrossRef Zhou S, Guo S (2009) Two-parameter criterion for crack growth under compressive loading. Int J Rock Mech Min Sci 46:1389–1393CrossRef
Metadaten
Titel
A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances
verfasst von
Jorge Castro
Sergio Cicero
César Sagaseta
Publikationsdatum
05.03.2015
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 1/2016
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-015-0728-8

Weitere Artikel der Ausgabe 1/2016

Rock Mechanics and Rock Engineering 1/2016 Zur Ausgabe

Editorial

Editorial