Skip to main content

2015 | OriginalPaper | Buchkapitel

A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems

verfasst von : Simon K.-M. R. Rittmann

Erschienen in: Biogas Science and Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microbiological biogas upgrading could become a promising technology for production of methane (CH4). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H2). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO2), H2 and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH4 production rates and low CH4 fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H2 gas liquid mass transfer limitation, which results in low volumetric CH4 productivity compared to pure H2/CO2 conversion to CH4. If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH4 productivity, as well as if the aim of a single stage conversion to a CH4 fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO2-neutral biomethane production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709CrossRef Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709CrossRef
2.
Zurück zum Zitat Howarth RW (2014) A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng 2(2):47–60CrossRef Howarth RW (2014) A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng 2(2):47–60CrossRef
3.
Zurück zum Zitat Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira D, Shepherd TG, Bitz CM (2014) The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc Math Phys Eng Sci 372(2019):20130040CrossRef Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira D, Shepherd TG, Bitz CM (2014) The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc Math Phys Eng Sci 372(2019):20130040CrossRef
4.
Zurück zum Zitat Siegl S, Laaber M, Holubar P (2011) Green electricity from Biomass, part I: environmental impacts of direct life cycle emissions. Waste Biomass Valorization 2(3):267–284CrossRef Siegl S, Laaber M, Holubar P (2011) Green electricity from Biomass, part I: environmental impacts of direct life cycle emissions. Waste Biomass Valorization 2(3):267–284CrossRef
5.
Zurück zum Zitat Siegl S, Laaber M, Holubar P (2012) Green electricity from biomass, part II: environmental impacts considering avoided burdens from replacing the conventional provision of additional functions. Waste Biomass Valorization 3(1):1–21CrossRef Siegl S, Laaber M, Holubar P (2012) Green electricity from biomass, part II: environmental impacts considering avoided burdens from replacing the conventional provision of additional functions. Waste Biomass Valorization 3(1):1–21CrossRef
6.
Zurück zum Zitat Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645CrossRef Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645CrossRef
7.
Zurück zum Zitat Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109(11):2729–2736CrossRef Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109(11):2729–2736CrossRef
8.
Zurück zum Zitat Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152 Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152
9.
Zurück zum Zitat Rittmann S, Seifert A, Herwig C (2015) Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Crit Rev Biotechnol 35(2):141–151 Rittmann S, Seifert A, Herwig C (2015) Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2. Crit Rev Biotechnol 35(2):141–151
10.
Zurück zum Zitat Bernacchi S, Seifert AH, Krajete A, Rittmann SK-MR (2013) Anwendungen der Methanogenese zur Biogasveredelung und Stromspeicherung presented at the biogas 13. St. Pölten, Austria, 04 Dec 2013 Bernacchi S, Seifert AH, Krajete A, Rittmann SK-MR (2013) Anwendungen der Methanogenese zur Biogasveredelung und Stromspeicherung presented at the biogas 13. St. Pölten, Austria, 04 Dec 2013
11.
Zurück zum Zitat Rittmann SK-MR, Seifert AH, Krajete A (2014) Biomethanisierung—ein Prozess zur Ermöglichung der Energiewende? BIOspektrum 20(7):816–817CrossRef Rittmann SK-MR, Seifert AH, Krajete A (2014) Biomethanisierung—ein Prozess zur Ermöglichung der Energiewende? BIOspektrum 20(7):816–817CrossRef
12.
Zurück zum Zitat Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67(1):437–457CrossRef Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67(1):437–457CrossRef
13.
Zurück zum Zitat Cavicchioli R (2011) Archaea–timeline of the third domain. Nat Rev Microbiol 9(1):51–61CrossRef Cavicchioli R (2011) Archaea–timeline of the third domain. Nat Rev Microbiol 9(1):51–61CrossRef
14.
Zurück zum Zitat Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591CrossRef Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591CrossRef
15.
Zurück zum Zitat Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536CrossRef Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536CrossRef
16.
Zurück zum Zitat Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127(1):59–65CrossRef Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127(1):59–65CrossRef
17.
Zurück zum Zitat Rittmann SK-MR, Lee HS, Lim JK, Kim TW, Lee J-H, Kang SG (2015) One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv 33(1):165–177CrossRef Rittmann SK-MR, Lee HS, Lim JK, Kim TW, Lee J-H, Kang SG (2015) One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv 33(1):165–177CrossRef
18.
Zurück zum Zitat Rittmann S, Holubar P (2014) Rapid extraction of total RNA from an anaerobic sludge biocoenosis. Folia Microbiol (Praha) 59(2):127–132CrossRef Rittmann S, Holubar P (2014) Rapid extraction of total RNA from an anaerobic sludge biocoenosis. Folia Microbiol (Praha) 59(2):127–132CrossRef
19.
Zurück zum Zitat Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274CrossRef Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274CrossRef
20.
Zurück zum Zitat Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRef Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRef
21.
Zurück zum Zitat Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenergy 36:293–301CrossRef Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenergy 36:293–301CrossRef
22.
Zurück zum Zitat Seifert AH, Rittmann S, Bernacchi S, Herwig C (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresour Technol 136:747–751CrossRef Seifert AH, Rittmann S, Bernacchi S, Herwig C (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresour Technol 136:747–751CrossRef
23.
Zurück zum Zitat Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162CrossRef Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162CrossRef
24.
Zurück zum Zitat Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480CrossRef Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480CrossRef
25.
Zurück zum Zitat Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109(4):1088–1094CrossRef Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109(4):1088–1094CrossRef
26.
Zurück zum Zitat Drake HL, Daniel SL, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997) Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? BioFactors Oxf Engl 6(1):13–24CrossRef Drake HL, Daniel SL, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997) Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? BioFactors Oxf Engl 6(1):13–24CrossRef
27.
Zurück zum Zitat Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97(3):1373–1381CrossRef Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97(3):1373–1381CrossRef
28.
Zurück zum Zitat Wise DL, Cooney CL, Augenstein DC (1978) Biomethanation: Anaerobic fermentation of CO2, H2 and CO to methane. Biotechnol Bioeng 20(8):1153–1172CrossRef Wise DL, Cooney CL, Augenstein DC (1978) Biomethanation: Anaerobic fermentation of CO2, H2 and CO to methane. Biotechnol Bioeng 20(8):1153–1172CrossRef
29.
Zurück zum Zitat Strevett KA, Vieth RF, Grasso D (1995) Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem Eng J Biochem Eng J 58(1):71–79CrossRef Strevett KA, Vieth RF, Grasso D (1995) Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem Eng J Biochem Eng J 58(1):71–79CrossRef
30.
Zurück zum Zitat Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT (2013) A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 by conversion with H2. Archaea 2013:e157529CrossRef Martin MR, Fornero JJ, Stark R, Mets L, Angenent LT (2013) A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 by conversion with H2. Archaea 2013:e157529CrossRef
31.
Zurück zum Zitat Pauss A, Andre G, Perrier M, Guiot SR (1990) Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microbiol 56(6):1636–1644 Pauss A, Andre G, Perrier M, Guiot SR (1990) Liquid-to-gas mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microbiol 56(6):1636–1644
32.
Zurück zum Zitat Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Reichl U, Sundmacher K (2104) Biological methanation of hydrogen within biogas plants: A model-based feasibility study. Appl Energy 134:413–425 Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Reichl U, Sundmacher K (2104) Biological methanation of hydrogen within biogas plants: A model-based feasibility study. Appl Energy 134:413–425
33.
Zurück zum Zitat Sonesson M (2013) Methane yields from anaerobic digestion of food waste. Karlstad University, Sweden Sonesson M (2013) Methane yields from anaerobic digestion of food waste. Karlstad University, Sweden
34.
Zurück zum Zitat Spadiut O, Rittmann S, Dietzsch C, Herwig C (2013) Dynamic process conditions in bioprocess development. Eng Life Sci 13(1):88–101CrossRef Spadiut O, Rittmann S, Dietzsch C, Herwig C (2013) Dynamic process conditions in bioprocess development. Eng Life Sci 13(1):88–101CrossRef
35.
Zurück zum Zitat Bernacchi S, Rittmann S, Seifert AH, Krajete A, Herwig C (2014) Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS Bioeng. 1(2):72–86CrossRef Bernacchi S, Rittmann S, Seifert AH, Krajete A, Herwig C (2014) Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS Bioeng. 1(2):72–86CrossRef
36.
Zurück zum Zitat Martinez-Porqueras E, Rittmann S, Herwig C (2013) Analysis of H2 to CO2 yield and physiological key parameters of Enterobacter aerogenes and Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 38(25):10245–10251CrossRef Martinez-Porqueras E, Rittmann S, Herwig C (2013) Analysis of H2 to CO2 yield and physiological key parameters of Enterobacter aerogenes and Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 38(25):10245–10251CrossRef
37.
Zurück zum Zitat Martinez-Porqueras E, Rittmann S, Herwig C (2012) Biofuels and CO2 neutrality: an opportunity. Biofuels 3(4):413–426CrossRef Martinez-Porqueras E, Rittmann S, Herwig C (2012) Biofuels and CO2 neutrality: an opportunity. Biofuels 3(4):413–426CrossRef
38.
Zurück zum Zitat Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11(1):115CrossRef Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11(1):115CrossRef
39.
Zurück zum Zitat Ahring BK, Westermann P (2007) Coproduction of bioethanol with other biofuels. Adv Biochem Eng Biotechnol 108:289–302 Ahring BK, Westermann P (2007) Coproduction of bioethanol with other biofuels. Adv Biochem Eng Biotechnol 108:289–302
40.
Zurück zum Zitat Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35CrossRef Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35CrossRef
41.
Zurück zum Zitat Burkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energy 111:74–79CrossRef Burkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energy 111:74–79CrossRef
42.
Zurück zum Zitat Lee JC, Kim JH, Chang WS, Pak D (2012) Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. J Chem Technol Biotechnol 87(6):844–847CrossRef Lee JC, Kim JH, Chang WS, Pak D (2012) Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. J Chem Technol Biotechnol 87(6):844–847CrossRef
Metadaten
Titel
A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems
verfasst von
Simon K.-M. R. Rittmann
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-21993-6_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.