Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.05.2015 | Methodologies and Application | Ausgabe 5/2015

Soft Computing 5/2015

A critical feature extraction by kernel PCA in stock trading model

Zeitschrift:
Soft Computing > Ausgabe 5/2015
Autoren:
Pei-Chann Chang, Jheng-Long Wu
Wichtige Hinweise
Communicated by V. Loia.

Abstract

This paper presents a kernel-based principal component analysis (kernel PCA) to extract critical features for improving the performance of a stock trading model. The feature extraction method is one of the techniques to solve dimensionality reduction problems (DRP). The kernel PCA is a feature extraction approach which has been applied to data transformation from known variables to capture critical information. The kernel PCA is a kernel-based data mapping tool that has characteristics of both principal component analysis and non-linear mapping. The feature selection method is another DRP technique that selects only a small set of features from known variables, but these features still indicate possible collinearity problems that fail to reflect clear information. However, most feature extraction methods use a variable mapping application to eliminate noisy and collinear variables. In this research, we use the kernel-PCA method in a stock trading model to transform stock technical indices (TI) which allows features of smaller dimension to be formed. The kernel-PCA method has been applied to various stocks and sliding window testing methods using both half-year and 1-year testing strategies. The experimental results show that the proposed method generates more profits than other DRP methods on the America stock market. This stock trading model is very practical for real-world application, and it can be implemented in a real-time environment.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2015

Soft Computing 5/2015 Zur Ausgabe

Premium Partner

    Bildnachweise