Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2023 | OriginalPaper | Buchkapitel

A Critical Review on Waste Plastic into Value-Added Hydrocarbons and Fuels

verfasst von : Rao Adeel Un Nabi, Muhammad Yasin Naz, Shazia Shukrullah, Abdul Ghaffar

Erschienen in: Energy and Environment in the Tropics

Verlag: Springer Nature Singapore

share
TEILEN

Abstract

Waste plastic is not a naturally degradable material, which is spreading diseases and adversely affecting our environment. Despite its nondegradability, this waste is an efficient source of hydrocarbons. Polyvinyl chloride (PVC), polyethylene (PE), and polypropylene (PP) contribute a major part to plastic-based wastes. Instead of burning and landfilling, waste plastic can be converted into value-added products. The efficacious disposal of this waste results in value-added products, such as carbon nanotubes (CNTs), combustible gases and liquid fuels. Waste management and recycling in this way are instrumental for the social, economic, and sustainable environment. CNTs and fuels from the plastic can be produced via arc discharge, chemical vapor deposition, catalytic pyrolysis and non-catalytic pyrolysis methods. Many researchers have reported the production of hydrogen fuel through pyrolysis of plastic waste, which is much more efficient and environmental friendly than traditional fossil fuels. Hydrogen is being taken as the fuel for the future. This chapter reviews the possible conversion of plastic waste into value-added hydrocarbons and fuels.
Literatur
2.
Zurück zum Zitat Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste-a review. Procedia Environ Sci 35:701–708 CrossRef Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste-a review. Procedia Environ Sci 35:701–708 CrossRef
3.
Zurück zum Zitat Junga MR, Horgena FD, Orskib SV, Rodriguez V, Beersb KL, Balazsc GH, Jonesc TT, Workd TM, Brignace KC, Royerf SJ, Hyrenbacha KD, Jensena BA, Lynchg JM (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127:704–716 CrossRef Junga MR, Horgena FD, Orskib SV, Rodriguez V, Beersb KL, Balazsc GH, Jonesc TT, Workd TM, Brignace KC, Royerf SJ, Hyrenbacha KD, Jensena BA, Lynchg JM (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127:704–716 CrossRef
4.
Zurück zum Zitat Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422 CrossRef Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422 CrossRef
5.
Zurück zum Zitat Zhuo C, Levendis YA (2014) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci 131(4):1–14 CrossRef Zhuo C, Levendis YA (2014) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci 131(4):1–14 CrossRef
6.
Zurück zum Zitat Gong J, Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T (2012) Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni 2O 3 into carbon nanotubes and its mechanism. Appl Catal A 449:112–120 CrossRef Gong J, Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T (2012) Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni 2O 3 into carbon nanotubes and its mechanism. Appl Catal A 449:112–120 CrossRef
7.
Zurück zum Zitat Jusoh N, Bakar SA, Alfarisa S, Disa NM, Jaafar R, Mohamed A, Isa IM, Hashim N, Kamari A, Mahmood MR (2015) Mass production of carbon nanotubes and its future applications: a review. In: Advanced materials research, vol 1109, pp 83–87 Jusoh N, Bakar SA, Alfarisa S, Disa NM, Jaafar R, Mohamed A, Isa IM, Hashim N, Kamari A, Mahmood MR (2015) Mass production of carbon nanotubes and its future applications: a review. In: Advanced materials research, vol 1109, pp 83–87
8.
Zurück zum Zitat Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758 CrossRef Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758 CrossRef
9.
Zurück zum Zitat Azmina MS, Suriani AB, Salina M, Azira AA, Dalila AR, Asli NA, Rosly J, Nor RM, Rusop M (2012) Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes. In: Nano hybrids, vol 2. Trans Tech Publications Ltd., pp 43–63 Azmina MS, Suriani AB, Salina M, Azira AA, Dalila AR, Asli NA, Rosly J, Nor RM, Rusop M (2012) Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes. In: Nano hybrids, vol 2. Trans Tech Publications Ltd., pp 43–63
10.
Zurück zum Zitat Bell MS, Teo KB, Lacerda RG, Milne WI, Hash DB, Meyyappan M (2006) Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl Chem 78(6):1117–1125 CrossRef Bell MS, Teo KB, Lacerda RG, Milne WI, Hash DB, Meyyappan M (2006) Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl Chem 78(6):1117–1125 CrossRef
11.
Zurück zum Zitat Miskolczi N, Angyal A, Bartha L, Valkai I (2009) Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process Technol 90(7–8):1032–1040 CrossRef Miskolczi N, Angyal A, Bartha L, Valkai I (2009) Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process Technol 90(7–8):1032–1040 CrossRef
12.
Zurück zum Zitat Kongkarat S, Khanna R, Sahajwalla V (2013) Interactions of polymer/coke blends with molten steel at 1823 K: interfacial phenomena. Steel Res Int 84(4):362–369 Kongkarat S, Khanna R, Sahajwalla V (2013) Interactions of polymer/coke blends with molten steel at 1823 K: interfacial phenomena. Steel Res Int 84(4):362–369
13.
Zurück zum Zitat Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017 CrossRef Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017 CrossRef
14.
Zurück zum Zitat Strong KL, Anderson DP, Lafdi K, Kuhn JN (2003) Purification process for single-wall carbon nanotubes. Carbon 41(8):1477–1488 CrossRef Strong KL, Anderson DP, Lafdi K, Kuhn JN (2003) Purification process for single-wall carbon nanotubes. Carbon 41(8):1477–1488 CrossRef
15.
Zurück zum Zitat Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1–2):173–178 CrossRef Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334(1–2):173–178 CrossRef
16.
Zurück zum Zitat Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoffl RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640 Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoffl RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640
17.
Zurück zum Zitat Musatov AL, Kiselev NA, Zakharov DN, Kukovitskii EF, Zhbanov AI, Izrael’yants KR, Chirkova EG (2001) Field electron emission from nanotubes carbon layers growing by CVD process. Appl Surf Sci 183:111–119 Musatov AL, Kiselev NA, Zakharov DN, Kukovitskii EF, Zhbanov AI, Izrael’yants KR, Chirkova EG (2001) Field electron emission from nanotubes carbon layers growing by CVD process. Appl Surf Sci 183:111–119
18.
Zurück zum Zitat M. Zhao, Y. Xia, D. Zhang, and L. Mei. (2003). Stability and electronic structure of AlN nanotubes. Physical Review B 68(23). Pages: 235415 M. Zhao, Y. Xia, D. Zhang, and L. Mei. (2003). Stability and electronic structure of AlN nanotubes. Physical Review B 68(23). Pages: 235415
19.
Zurück zum Zitat Dresselhaus MS (1992) Down the straight and narrow. Nature 358(6383):195–196 CrossRef Dresselhaus MS (1992) Down the straight and narrow. Nature 358(6383):195–196 CrossRef
20.
Zurück zum Zitat Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102 CrossRef Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102 CrossRef
21.
Zurück zum Zitat Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes the route toward applications. Science 297(5582):787–792 CrossRef Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes the route toward applications. Science 297(5582):787–792 CrossRef
22.
Zurück zum Zitat Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–450 CrossRef Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33(1):419–450 CrossRef
23.
Zurück zum Zitat Lordi V, Yao N, We J (2001) Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater 13(3):733–737 CrossRef Lordi V, Yao N, We J (2001) Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater 13(3):733–737 CrossRef
24.
Zurück zum Zitat Ga L, Zhou X, Ding Y (2007) Effective thermal and electrical conductivity of carbon nanotube composites. Chem Phys Lett 434(4–6):297–300 CrossRef Ga L, Zhou X, Ding Y (2007) Effective thermal and electrical conductivity of carbon nanotube composites. Chem Phys Lett 434(4–6):297–300 CrossRef
25.
Zurück zum Zitat Teo BK, Singh C, Chhowalla M, Milne IW (2003) Catalytic synthesis of carbon nanotubes and nanofibers. Encycl Nanosci Nanotechnol 10(1) Teo BK, Singh C, Chhowalla M, Milne IW (2003) Catalytic synthesis of carbon nanotubes and nanofibers. Encycl Nanosci Nanotechnol 10(1)
26.
Zurück zum Zitat Behera A, Sahini D, Pardhi D (2022) Procedures for recycling of nanomaterials: a sustainable approach. In: Nanomaterials recycling, pp 175–207 Behera A, Sahini D, Pardhi D (2022) Procedures for recycling of nanomaterials: a sustainable approach. In: Nanomaterials recycling, pp 175–207
27.
Zurück zum Zitat Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44(10):1517–1520 CrossRef Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44(10):1517–1520 CrossRef
28.
Zurück zum Zitat Wang Y, Da S, Kim MJ, Kelly KF, Kittrell WGC, Hauge RH, Smalley RE (2004) Ultrathin “Bed-of-Nails” membranes of single-wall carbon nanotubes. Chem Soc 126(31):9502–9503 CrossRef Wang Y, Da S, Kim MJ, Kelly KF, Kittrell WGC, Hauge RH, Smalley RE (2004) Ultrathin “Bed-of-Nails” membranes of single-wall carbon nanotubes. Chem Soc 126(31):9502–9503 CrossRef
29.
Zurück zum Zitat Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes emission sous champ des nanotubes de carbone. C R Phys 4(9):1021–1033 CrossRef Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes emission sous champ des nanotubes de carbone. C R Phys 4(9):1021–1033 CrossRef
30.
Zurück zum Zitat Zhao K, Liu G, Cao W, Su Z, Zhao J, Han J, Dai B, Cao K, Zhu J (2020) A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity. Polymer 206:122885 CrossRef Zhao K, Liu G, Cao W, Su Z, Zhao J, Han J, Dai B, Cao K, Zhu J (2020) A combination of nanodiamond and boron nitride for the preparation of polyvinyl alcohol composite film with high thermal conductivity. Polymer 206:122885 CrossRef
31.
Zurück zum Zitat Berkmans AJ, Ramakrishnan S, Jain G, Haridoss P (2013) Aligning carbon nanotubes, synthesized using the arc discharge technique, during and after synthesis. Carbon 55:185–195 CrossRef Berkmans AJ, Ramakrishnan S, Jain G, Haridoss P (2013) Aligning carbon nanotubes, synthesized using the arc discharge technique, during and after synthesis. Carbon 55:185–195 CrossRef
32.
Zurück zum Zitat Yusoff HM, Shastry R, Querrioux T, Abrahamson J (2006) Nanotube deposition in a continuous arc reactor for varying arc gap and substrate temperature. Curr Appl Phys 6(3):422–426 CrossRef Yusoff HM, Shastry R, Querrioux T, Abrahamson J (2006) Nanotube deposition in a continuous arc reactor for varying arc gap and substrate temperature. Curr Appl Phys 6(3):422–426 CrossRef
33.
Zurück zum Zitat Bai L, Sun W, Yang Z, Ouyang Y, Wang M, Yuan F (2022) Laboratory research on design of three-phase ac arc plasma pyrolysis device for recycling of waste printed circuit boards. Processes 10:1031 CrossRef Bai L, Sun W, Yang Z, Ouyang Y, Wang M, Yuan F (2022) Laboratory research on design of three-phase ac arc plasma pyrolysis device for recycling of waste printed circuit boards. Processes 10:1031 CrossRef
34.
Zurück zum Zitat Bhongade T, Gogaram, Gautam DM, Vijayakuma RP (2019) Synthesis of MWCNTs using waste toner powder as carbon source by chemical vapor deposition method. Fuller Nanotub Carb Nanostruct 27(11):864–872 Bhongade T, Gogaram, Gautam DM, Vijayakuma RP (2019) Synthesis of MWCNTs using waste toner powder as carbon source by chemical vapor deposition method. Fuller Nanotub Carb Nanostruct 27(11):864–872
35.
Zurück zum Zitat Herranz T, Rojas S, Pérez-Alonso JF, Terreros M, Fierro GLJ (2006) Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 243(1):199–211 CrossRef Herranz T, Rojas S, Pérez-Alonso JF, Terreros M, Fierro GLJ (2006) Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 243(1):199–211 CrossRef
36.
Zurück zum Zitat Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrol 94:91–98 CrossRef Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrol 94:91–98 CrossRef
37.
Zurück zum Zitat Yen WY, Huang DM, Lin JF (2008) Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers. Diam Relat Mater 17(4–5):567–570 CrossRef Yen WY, Huang DM, Lin JF (2008) Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers. Diam Relat Mater 17(4–5):567–570 CrossRef
38.
Zurück zum Zitat Yang Z, Zhang Q, Luo G, Huang JQ, Zhao MQ, Wei F (2010) Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Appl Phys A 100(2):533–540 CrossRef Yang Z, Zhang Q, Luo G, Huang JQ, Zhao MQ, Wei F (2010) Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Appl Phys A 100(2):533–540 CrossRef
39.
Zurück zum Zitat Panahi A, Wei Z, Song G, Levendis YA (2019) Influence of stainless-steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics. Ind Eng Chem Res 58(8):3009–3023 CrossRef Panahi A, Wei Z, Song G, Levendis YA (2019) Influence of stainless-steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics. Ind Eng Chem Res 58(8):3009–3023 CrossRef
40.
Zurück zum Zitat Tripathi PK, Durbach S, Coville NJ (2017) Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst. Nanomaterials 7(10). Article 284 Tripathi PK, Durbach S, Coville NJ (2017) Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst. Nanomaterials 7(10). Article 284
41.
Zurück zum Zitat Pattanshetti A, Pradeep N, Chaitra V, Uma V (2020) Synthesis of multi-walled carbon nanotubes (MWCNTs) from plastic waste & analysis of garlic coated gelatin/MWCNTs nano composite films as food packaging material. SN Appl Sci 2(4):1–7 CrossRef Pattanshetti A, Pradeep N, Chaitra V, Uma V (2020) Synthesis of multi-walled carbon nanotubes (MWCNTs) from plastic waste & analysis of garlic coated gelatin/MWCNTs nano composite films as food packaging material. SN Appl Sci 2(4):1–7 CrossRef
42.
Zurück zum Zitat Druffner S, De Andrade JM, Sha R, Su W, Kulkarni A, Liu Y, Musselman HI, Jeffrey GA (2013). Nanoexplorers symposium Druffner S, De Andrade JM, Sha R, Su W, Kulkarni A, Liu Y, Musselman HI, Jeffrey GA (2013). Nanoexplorers symposium
43.
Zurück zum Zitat Meng YL, Park JS (2014) Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Lett 15(2):89–104 CrossRef Meng YL, Park JS (2014) Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Lett 15(2):89–104 CrossRef
44.
Zurück zum Zitat Muchhala D, Yadav NB, Pandey A, Chilla V, Shafeeq MM, Gupta G, Mondal PD (2021). Influences of relative density and strain rate on the mechanical properties of Al-cenosphere-SWNTs hybrid foams. Int J Mech Sci 198. Article 106388 Muchhala D, Yadav NB, Pandey A, Chilla V, Shafeeq MM, Gupta G, Mondal PD (2021). Influences of relative density and strain rate on the mechanical properties of Al-cenosphere-SWNTs hybrid foams. Int J Mech Sci 198. Article 106388
Metadaten
Titel
A Critical Review on Waste Plastic into Value-Added Hydrocarbons and Fuels
verfasst von
Rao Adeel Un Nabi
Muhammad Yasin Naz
Shazia Shukrullah
Abdul Ghaffar
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-6688-0_9

Premium Partner