Skip to main content
Erschienen in:

01.06.2022

A Data-Driven Approach for Traffic Crash Prediction: A Case Study in Ningbo, China

verfasst von: Zhenghua Hu, Jibiao Zhou, Kejie Huang, Enyou Zhang

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the past few years, fully connected Long Short-Term Memory (FC-LSTM) network has been widely used to predict traffic crashes in urban areas. This article attempts to improve the traditional prediction model by adopting Convolutional Long Short-Term Memory (ConvLSTM) network. ConvLSTM can effectively capture the spatial and temporal characteristics of traffic crashes within road network. It overcomes the shortcoming of the FC-LSTM model that ignores the spatial characteristics of traffic crashes. Therefore, the ConvLSTM model shows excellent performance when predicting traffic crashes. To verify the effectiveness of the ConvLSTM, this study uses historical crash data in the City of Ningbo to train the model and compares the result with that from FC-LSTM. The results show that ConvLSTM has better accuracy and lower loss values. Moreover, the model has higher calculation efficiency. Therefore, the ConvLSTM model is more suitable for predicting traffic crashes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Organization WH (2018) Global status report on road safety 2018: summary. World Health Organization Organization WH (2018) Global status report on road safety 2018: summary. World Health Organization
2.
Zurück zum Zitat Atique S, et al. (2020) A nursing informatics response to COVID-19: Perspectives from five regions of the world. J Adv Nurs (in press) Atique S, et al. (2020) A nursing informatics response to COVID-19: Perspectives from five regions of the world. J Adv Nurs (in press)
3.
Zurück zum Zitat Wang, X., Qu, X., Jin, S.: Hotspot identification considering daily variability of traffic flow and crash record: a case study. J Transp Saf Secur. 12(2), 275–291 (2020) Wang, X., Qu, X., Jin, S.: Hotspot identification considering daily variability of traffic flow and crash record: a case study. J Transp Saf Secur. 12(2), 275–291 (2020)
4.
Zurück zum Zitat Elamrani Abou Elassad, Z., Mousannif, H., Al Moatassime, H.: Class-imbalanced crash prediction based on real-time traffic and weather data: a driving simulator study. Traffic Inj Prev. 21(3), 201–208 (2020)CrossRef Elamrani Abou Elassad, Z., Mousannif, H., Al Moatassime, H.: Class-imbalanced crash prediction based on real-time traffic and weather data: a driving simulator study. Traffic Inj Prev. 21(3), 201–208 (2020)CrossRef
5.
Zurück zum Zitat Ehsani, J.P., et al.: Learner driver experience and teenagers’ crash risk during the first year of independent driving. JAMA Pediatr. 174(6), 573–580 (2020)CrossRef Ehsani, J.P., et al.: Learner driver experience and teenagers’ crash risk during the first year of independent driving. JAMA Pediatr. 174(6), 573–580 (2020)CrossRef
6.
Zurück zum Zitat Srivastava N, Mansimov E, Salakhudinov R (2015) Unsupervised learning of video representations using lstms. In international conference on machine learning. PMLR Srivastava N, Mansimov E, Salakhudinov R (2015) Unsupervised learning of video representations using lstms. In international conference on machine learning. PMLR
7.
Zurück zum Zitat Luo W, Liu W, Gao S (2017) Remembering History with Convolutional Lstm for Anomaly Detection. In 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE Luo W, Liu W, Gao S (2017) Remembering History with Convolutional Lstm for Anomaly Detection. In 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE
8.
Zurück zum Zitat Agethen, S., Hsu, W.H.: Deep multi-kernel convolutional lstm networks and an attention-based mechanism for videos. IEEE Trans Multimed. 22(3), 819–829 (2019)CrossRef Agethen, S., Hsu, W.H.: Deep multi-kernel convolutional lstm networks and an attention-based mechanism for videos. IEEE Trans Multimed. 22(3), 819–829 (2019)CrossRef
9.
Zurück zum Zitat Yuan Z, Zhou X, Yang T (2018) Hetero-ConvLSTM: a deep learning approach to traffic accident prediction on heterogeneous Spatio-temporal data. In knowledge discovery and data mining. Yuan Z, Zhou X, Yang T (2018) Hetero-ConvLSTM: a deep learning approach to traffic accident prediction on heterogeneous Spatio-temporal data. In knowledge discovery and data mining.
10.
Zurück zum Zitat Wu M (2019) Sequential images prediction using convolutional LSTM with application in precipitation Nowcasting. Science Wu M (2019) Sequential images prediction using convolutional LSTM with application in precipitation Nowcasting. Science
11.
Zurück zum Zitat Wilson D (2018) Using machine learning to predict car accident risk. Available online, accesed Wilson D (2018) Using machine learning to predict car accident risk. Available online, accesed
12.
Zurück zum Zitat Rahim, M.A., Hassan, H.M.: A deep learning based traffic crash severity prediction framework. Accid Anal Prev. 154, 106090 (2021)CrossRef Rahim, M.A., Hassan, H.M.: A deep learning based traffic crash severity prediction framework. Accid Anal Prev. 154, 106090 (2021)CrossRef
13.
Zurück zum Zitat Sun P, Guo G, Yu R (2017) Traffic Crash Prediction Based on Incremental Learning Algorithm. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA). IEEE Sun P, Guo G, Yu R (2017) Traffic Crash Prediction Based on Incremental Learning Algorithm. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA). IEEE
14.
Zurück zum Zitat Way, P., et al.: Spatio-temporal crash prediction: effects of negative sampling on understanding network-level crash occurrence. Transp Res Rec. 0361198121991836 (2021) Way, P., et al.: Spatio-temporal crash prediction: effects of negative sampling on understanding network-level crash occurrence. Transp Res Rec. 0361198121991836 (2021)
15.
Zurück zum Zitat Bao, J., Liu, P., Ukkusuri, S.V.: A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accid Anal Prev. 122, 239–254 (2019)CrossRef Bao, J., Liu, P., Ukkusuri, S.V.: A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accid Anal Prev. 122, 239–254 (2019)CrossRef
16.
Zurück zum Zitat Report, N.: Effects of Illumination on Operating Characteristics of Freeways. Am J Obstet Gynecol. 211(6), 1–2 (2014) Report, N.: Effects of Illumination on Operating Characteristics of Freeways. Am J Obstet Gynecol. 211(6), 1–2 (2014)
17.
Zurück zum Zitat Yokoo T, Levinson DM, Marasteanu M (2016) Does poor road condition increase crashes? Working Papers Yokoo T, Levinson DM, Marasteanu M (2016) Does poor road condition increase crashes? Working Papers
18.
Zurück zum Zitat Malin, F., Norros, I., Innamaa, S.: Accident risk of road and weather conditions on different road types. Accid Anal Prev. 122(JAN.), 181–188 (2019)CrossRef Malin, F., Norros, I., Innamaa, S.: Accident risk of road and weather conditions on different road types. Accid Anal Prev. 122(JAN.), 181–188 (2019)CrossRef
19.
Zurück zum Zitat Leard B, Roth K (2015) Weather, Traffic Accidents, and Climate Change. Discussion Papers Leard B, Roth K (2015) Weather, Traffic Accidents, and Climate Change. Discussion Papers
20.
Zurück zum Zitat Janoff, M.S., et al.: The relationship between visibility and traffic accidents. J Illum Eng Soc. 8(2), 95–104 (1978)CrossRef Janoff, M.S., et al.: The relationship between visibility and traffic accidents. J Illum Eng Soc. 8(2), 95–104 (1978)CrossRef
21.
Zurück zum Zitat Horsman, G., Conniss, L.R.: Investigating evidence of mobile phone usage by drivers in road traffic accidents. Digit Investig. 12, (2015) Horsman, G., Conniss, L.R.: Investigating evidence of mobile phone usage by drivers in road traffic accidents. Digit Investig. 12, (2015)
22.
Zurück zum Zitat Rolison, J.J., et al.: What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers' opinions, and road accident records. Accid Anal Prev. 115, 11–24 (2018)CrossRef Rolison, J.J., et al.: What are the factors that contribute to road accidents? An assessment of law enforcement views, ordinary drivers' opinions, and road accident records. Accid Anal Prev. 115, 11–24 (2018)CrossRef
23.
Zurück zum Zitat Yao, Q., Wang, L.: Traffic accident prediction based on BP neural network. J Binzhou Univ. (6), (2016) Yao, Q., Wang, L.: Traffic accident prediction based on BP neural network. J Binzhou Univ. (6), (2016)
24.
Zurück zum Zitat Rhee, K., et al.: Spatial regression analysis of traffic crashes in Seoul. Accid Anal Prev. 91, 190–199 (2016)CrossRef Rhee, K., et al.: Spatial regression analysis of traffic crashes in Seoul. Accid Anal Prev. 91, 190–199 (2016)CrossRef
25.
Zurück zum Zitat Miyata, M., K. Matsuo, and R. Omura, Automatic Classification of Traffic Accident Using Velocity and Acceleration Data of Drive Recorder. 2018CrossRef Miyata, M., K. Matsuo, and R. Omura, Automatic Classification of Traffic Accident Using Velocity and Acceleration Data of Drive Recorder. 2018CrossRef
26.
Zurück zum Zitat Alrajhi, M. and M. Kamel, A Deep-Learning Model for Predicting and Visualizing the Risk of Road Traffic Accidents in Saudi Arabia: A Tutorial Approach. Int J Adv Comput Sci Appl, 10 (11): 475, 2019. 483 Alrajhi, M. and M. Kamel, A Deep-Learning Model for Predicting and Visualizing the Risk of Road Traffic Accidents in Saudi Arabia: A Tutorial Approach. Int J Adv Comput Sci Appl, 10 (11): 475, 2019. 483
27.
Zurück zum Zitat Dong, C., et al.: An improved deep learning model for traffic crash prediction. J Adv Transp. 2018, 1–13 (2018) Dong, C., et al.: An improved deep learning model for traffic crash prediction. J Adv Transp. 2018, 1–13 (2018)
28.
Zurück zum Zitat Polson, N.G., Sokolov, V.: Deep learning for short-term traffic flow prediction. Transp Res C Emerg Technol. 79, 1–17 (2017)CrossRef Polson, N.G., Sokolov, V.: Deep learning for short-term traffic flow prediction. Transp Res C Emerg Technol. 79, 1–17 (2017)CrossRef
29.
Zurück zum Zitat Zhang, Z., et al.: A deep learning approach for detecting traffic accidents from social media data. Transp Res C Emerg Technol. 86, 580–596 (2018)CrossRef Zhang, Z., et al.: A deep learning approach for detecting traffic accidents from social media data. Transp Res C Emerg Technol. 86, 580–596 (2018)CrossRef
30.
Zurück zum Zitat Zheng, M., et al.: Traffic Accident’s severity prediction: a deep-learning approach-based CNN network. IEEE Access. 7, 39897–39910 (2019)CrossRef Zheng, M., et al.: Traffic Accident’s severity prediction: a deep-learning approach-based CNN network. IEEE Access. 7, 39897–39910 (2019)CrossRef
31.
Zurück zum Zitat Li, W., Zhao, X., Liu, S.: Traffic accident prediction based on multivariable Grey model. Information (Switzerland). 11(4), 184 (2020) Li, W., Zhao, X., Liu, S.: Traffic accident prediction based on multivariable Grey model. Information (Switzerland). 11(4), 184 (2020)
32.
Zurück zum Zitat Zhang, Z., et al.: Traffic accident prediction based on LSTM neural network model. Comput Eng Applic. 055(014), 249–253 (2019) 259 Zhang, Z., et al.: Traffic accident prediction based on LSTM neural network model. Comput Eng Applic. 055(014), 249–253 (2019) 259
33.
Zurück zum Zitat Yan, Z., et al.: Short-term traffic flow forecasting method based on CNN+LSTM. Comput Eng Des. 040(9), 2620–2624 (2019) 2659 Yan, Z., et al.: Short-term traffic flow forecasting method based on CNN+LSTM. Comput Eng Des. 040(9), 2620–2624 (2019) 2659
34.
Zurück zum Zitat Ma, C., Dai, G., Zhou, J.: Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method. IEEE Trans Intell Transp Syst. (99), 1–10 (2021) Ma, C., Dai, G., Zhou, J.: Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method. IEEE Trans Intell Transp Syst. (99), 1–10 (2021)
35.
Zurück zum Zitat Savolainen, P.T., et al.: The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives. Accid Anal Prev. 43(5), 1666–1676 (2011)CrossRef Savolainen, P.T., et al.: The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives. Accid Anal Prev. 43(5), 1666–1676 (2011)CrossRef
36.
Zurück zum Zitat Imprialou, M., Quddus, M.: Crash data quality for road safety research: current state and future directions. Accid Anal Prev. 130, 84–90 (2019)CrossRef Imprialou, M., Quddus, M.: Crash data quality for road safety research: current state and future directions. Accid Anal Prev. 130, 84–90 (2019)CrossRef
37.
Zurück zum Zitat Li, P., Abdel-Aty, M., Yuan, J.: Real-time crash risk prediction on arterials based on LSTM-CNN. Accid Anal Prev. 135, 105371 (2020)CrossRef Li, P., Abdel-Aty, M., Yuan, J.: Real-time crash risk prediction on arterials based on LSTM-CNN. Accid Anal Prev. 135, 105371 (2020)CrossRef
38.
Zurück zum Zitat Kim S, et al. (2017) Deeprain: Convlstm network for precipitation prediction using multichannel radar data. arXiv preprint arXiv:1711.02316 Kim S, et al. (2017) Deeprain: Convlstm network for precipitation prediction using multichannel radar data. arXiv preprint arXiv:1711.02316
39.
Zurück zum Zitat Shi X, et al. (2015) Convolutional LSTM network: A Machine Learning Approach for Precipitation Nowcasting. Shi X, et al. (2015) Convolutional LSTM network: A Machine Learning Approach for Precipitation Nowcasting.
40.
Zurück zum Zitat Guo, Y., et al.: An extreme value theory based approach for calibration of microsimulation models for safety analysis. Simul Model Pract Theory. 106, 102172 (2021)CrossRef Guo, Y., et al.: An extreme value theory based approach for calibration of microsimulation models for safety analysis. Simul Model Pract Theory. 106, 102172 (2021)CrossRef
41.
Zurück zum Zitat Khodabandelou, G., Kheriji, W., Selem, F.H.: Link traffic speed forecasting using convolutional attention-based gated recurrent unit. Appl Intell. 51(4), 2331–2352 (2021)CrossRef Khodabandelou, G., Kheriji, W., Selem, F.H.: Link traffic speed forecasting using convolutional attention-based gated recurrent unit. Appl Intell. 51(4), 2331–2352 (2021)CrossRef
42.
Zurück zum Zitat Zhao, L., et al.: T-gcn: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst. 21(9), 3848–3858 (2019)CrossRef Zhao, L., et al.: T-gcn: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst. 21(9), 3848–3858 (2019)CrossRef
Metadaten
Titel
A Data-Driven Approach for Traffic Crash Prediction: A Case Study in Ningbo, China
verfasst von
Zhenghua Hu
Jibiao Zhou
Kejie Huang
Enyou Zhang
Publikationsdatum
01.06.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 2/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00307-3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.