Skip to main content

2024 | OriginalPaper | Buchkapitel

A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data

verfasst von : Kexin Lou, Jingzhe Li, Markus Barth, Quanying Liu

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Whole-brain network modeling (WBM) offers a pivotal tool to explore the large-scale spatiotemporal dynamics of the brain at rest, during cognitive tasks, and under external stimulation. However, it is unclear how to fuse multi-modal neural dynamics in a united WBM framework and predict the whole-brain spatiotemporal neural responses to electrical stimulation. In this study, we present a computational framework with whole-brain network modeling, parameter optimization, and model validation using simultaneous EEG-SEEG data during intracranial brain stimulation. To test the efficacy of WBM in revealing brain-wide neural dynamics, our experiments utilize synthetic electrophysiological data, real EEG data, and real EEG-SEEG signals. Experimental results demonstrate that our WBM framework accurately captures the spatiotemporal brain activities by jointly leveraging the higher spatial resolution from SEEG and the whole-brain coverage from EEG. Notably, our model shows a higher correlation between the functional connectivity (FC) matrix of EEG and that of the inferred whole-brain neural dynamics from WBM (r=0.86), compared to the FC from EEG source localization (r=0.48). Together, we demonstrate the capability and flexibility of WBM framework to uncover the whole-brain spatiotemporal neural activity and its potential to provide new insights into the input-response mechanism of the brain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Antony, A.R., et al.: Simultaneous scalp EEG improves seizure lateralization during unilateral intracranial EEG evaluation in temporal lobe epilepsy. Seizure 64, 8–15 (2019)CrossRef Antony, A.R., et al.: Simultaneous scalp EEG improves seizure lateralization during unilateral intracranial EEG evaluation in temporal lobe epilepsy. Seizure 64, 8–15 (2019)CrossRef
2.
Zurück zum Zitat Castaldo, F., et al.: Multi-modal and multi-model interrogation of large-scale functional brain. NeuroImage 277, 120236 (2023)CrossRef Castaldo, F., et al.: Multi-modal and multi-model interrogation of large-scale functional brain. NeuroImage 277, 120236 (2023)CrossRef
3.
Zurück zum Zitat Deco, G., et al.: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. Neuroimage 169, 46–56 (2018)CrossRef Deco, G., et al.: Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. Neuroimage 169, 46–56 (2018)CrossRef
4.
Zurück zum Zitat Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kötter, R.: Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. 106(25), 10302–10307 (2009)CrossRef Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kötter, R.: Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. 106(25), 10302–10307 (2009)CrossRef
5.
Zurück zum Zitat Drew, P.J.: Neurovascular coupling: motive unknown. Trends Neurosci. 45(11), 809–819 (2022)CrossRef Drew, P.J.: Neurovascular coupling: motive unknown. Trends Neurosci. 45(11), 809–819 (2022)CrossRef
9.
Zurück zum Zitat Griffiths, J.D., Bastiaens, S.P., Kaboodvand, N.: Whole-brain modelling: past, present, and future. In: Giugliano, M., Negrello, M., Linaro, D. (eds.) Computational Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks, pp. 313–355. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-89439-9_13CrossRef Griffiths, J.D., Bastiaens, S.P., Kaboodvand, N.: Whole-brain modelling: past, present, and future. In: Giugliano, M., Negrello, M., Linaro, D. (eds.) Computational Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks, pp. 313–355. Springer International Publishing, Cham (2022). https://​doi.​org/​10.​1007/​978-3-030-89439-9_​13CrossRef
10.
Zurück zum Zitat Hashemi, M., et al.: Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators. Neural Netw. 163, 178–194 (2023)CrossRef Hashemi, M., et al.: Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators. Neural Netw. 163, 178–194 (2023)CrossRef
11.
Zurück zum Zitat Hebbink, J., Huiskamp, G., van Gils, S.A., Leijten, F.S., Meijer, H.G.: Pathological responses to single-pulse electrical stimuli in epilepsy: the role of feedforward inhibition. Eur. J. Neurosci. 51(4), 1122–1136 (2020)CrossRef Hebbink, J., Huiskamp, G., van Gils, S.A., Leijten, F.S., Meijer, H.G.: Pathological responses to single-pulse electrical stimuli in epilepsy: the role of feedforward inhibition. Eur. J. Neurosci. 51(4), 1122–1136 (2020)CrossRef
12.
Zurück zum Zitat Hosseini, S.A.H., Sohrabpour, A., He, B.: Electromagnetic source imaging using simultaneous scalp EEG and intracranial EEG: an emerging tool for interacting with pathological brain networks. Clin. Neurophysiol. 129(1), 168–187 (2018)CrossRef Hosseini, S.A.H., Sohrabpour, A., He, B.: Electromagnetic source imaging using simultaneous scalp EEG and intracranial EEG: an emerging tool for interacting with pathological brain networks. Clin. Neurophysiol. 129(1), 168–187 (2018)CrossRef
13.
Zurück zum Zitat Jung, K., et al.: Whole-brain dynamical modelling for classification of Parkinson’s disease. Brain Commun. 5(1), fcac331 (2023)CrossRef Jung, K., et al.: Whole-brain dynamical modelling for classification of Parkinson’s disease. Brain Commun. 5(1), fcac331 (2023)CrossRef
14.
Zurück zum Zitat Ley, M., Peláez, N., Principe, A., Langohr, K., Zucca, R., Rocamora, R.: Validation of direct cortical stimulation in Presurgical evaluation of epilepsy. Clin. Neurophysiol. 137, 38–45 (2022)CrossRef Ley, M., Peláez, N., Principe, A., Langohr, K., Zucca, R., Rocamora, R.: Validation of direct cortical stimulation in Presurgical evaluation of epilepsy. Clin. Neurophysiol. 137, 38–45 (2022)CrossRef
15.
Zurück zum Zitat Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., Mantini, D.: Detecting large-scale networks in the human brain using high-density electroencephalography. Hum. Brain Mapp. 38(9), 4631–4643 (2017)CrossRef Liu, Q., Farahibozorg, S., Porcaro, C., Wenderoth, N., Mantini, D.: Detecting large-scale networks in the human brain using high-density electroencephalography. Hum. Brain Mapp. 38(9), 4631–4643 (2017)CrossRef
16.
Zurück zum Zitat Makhalova, J., et al.: Virtual epileptic patient brain modeling: relationships with seizure onset and surgical outcome. Epilepsia 63(8), 1942–1955 (2022)CrossRef Makhalova, J., et al.: Virtual epileptic patient brain modeling: relationships with seizure onset and surgical outcome. Epilepsia 63(8), 1942–1955 (2022)CrossRef
17.
Zurück zum Zitat Mi, L., et al.: Connectome-constrained latent variable model of whole-brain neural activity. In: International Conference on Learning Representations (2021) Mi, L., et al.: Connectome-constrained latent variable model of whole-brain neural activity. In: International Conference on Learning Representations (2021)
18.
Zurück zum Zitat Momi, D., Wang, Z., Griffiths, J.D.: TMS-evoked responses are driven by recurrent large-scale network dynamics. Elife 12, e83232 (2023)CrossRef Momi, D., Wang, Z., Griffiths, J.D.: TMS-evoked responses are driven by recurrent large-scale network dynamics. Elife 12, e83232 (2023)CrossRef
19.
Zurück zum Zitat Mouthaan, B.E., et al.: Single pulse electrical stimulation to identify epileptogenic cortex: clinical information obtained from early evoked responses. Clin. Neurophysiol. 127(2), 1088–1098 (2016)CrossRef Mouthaan, B.E., et al.: Single pulse electrical stimulation to identify epileptogenic cortex: clinical information obtained from early evoked responses. Clin. Neurophysiol. 127(2), 1088–1098 (2016)CrossRef
20.
Zurück zum Zitat Parmigiani, S., et al.: Simultaneous stereo-EEG and high-density scalp EEG recordings to study the effects of intracerebral stimulation parameters. Brain Stimul. 15(3), 664–675 (2022)MathSciNetCrossRef Parmigiani, S., et al.: Simultaneous stereo-EEG and high-density scalp EEG recordings to study the effects of intracerebral stimulation parameters. Brain Stimul. 15(3), 664–675 (2022)MathSciNetCrossRef
21.
Zurück zum Zitat Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
22.
Zurück zum Zitat Pathak, A., Roy, D., Banerjee, A.: Whole-brain network models: from physics to bedside. Front. Comput. Neurosci. 16, 866517 (2022)CrossRef Pathak, A., Roy, D., Banerjee, A.: Whole-brain network models: from physics to bedside. Front. Comput. Neurosci. 16, 866517 (2022)CrossRef
23.
Zurück zum Zitat Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28(9), 3095–3114 (2018)CrossRef Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28(9), 3095–3114 (2018)CrossRef
24.
Zurück zum Zitat Shu, S., et al.: Informed MEG/EEG source imaging reveals the locations of interictal spikes missed by SEEG. Neuroimage 254, 119132 (2022)CrossRef Shu, S., et al.: Informed MEG/EEG source imaging reveals the locations of interictal spikes missed by SEEG. Neuroimage 254, 119132 (2022)CrossRef
25.
Zurück zum Zitat Sip, V., Hashemi, M., Dickscheid, T., Amunts, K., Petkoski, S., Jirsa, V.: Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics. Sci. Adv. 9(11), eabq7547 (2023)CrossRef Sip, V., Hashemi, M., Dickscheid, T., Amunts, K., Petkoski, S., Jirsa, V.: Characterization of regional differences in resting-state fMRI with a data-driven network model of brain dynamics. Sci. Adv. 9(11), eabq7547 (2023)CrossRef
26.
Zurück zum Zitat Siu, P.H., Müller, E., Zerbi, V., Aquino, K., Fulcher, B.D.: Extracting dynamical understanding from neural-mass models of mouse cortex. Front. Comput. Neurosci. 16, 847336 (2022)CrossRef Siu, P.H., Müller, E., Zerbi, V., Aquino, K., Fulcher, B.D.: Extracting dynamical understanding from neural-mass models of mouse cortex. Front. Comput. Neurosci. 16, 847336 (2022)CrossRef
27.
Zurück zum Zitat Van der Vlag, M., Kusch, L., Destexhe, A., Jirsa, V., Diaz-Pier, S., Goldman, J.S.: Vast TVB parameter space exploration: a modular framework for accelerating the multi-scale simulation of human brain dynamics. arXiv preprint arXiv:2311.13337 (2023) Van der Vlag, M., Kusch, L., Destexhe, A., Jirsa, V., Diaz-Pier, S., Goldman, J.S.: Vast TVB parameter space exploration: a modular framework for accelerating the multi-scale simulation of human brain dynamics. arXiv preprint arXiv:​2311.​13337 (2023)
28.
Zurück zum Zitat Wang, H.E., et al.: Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci. Transl. Med. 15(680), eabp8982 (2023)CrossRef Wang, H.E., et al.: Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci. Transl. Med. 15(680), eabp8982 (2023)CrossRef
29.
Zurück zum Zitat Withers, C.P., et al.: Identifying sources of human interictal discharges with travelling wave and white matter propagation. Brain 146(12), 5168–5181 (2023)CrossRef Withers, C.P., et al.: Identifying sources of human interictal discharges with travelling wave and white matter propagation. Brain 146(12), 5168–5181 (2023)CrossRef
30.
Zurück zum Zitat Yalcinkaya, B.H., et al.: Personalized virtual brains of Alzheimer’s disease link dynamical biomarkers of fMRI with increased local excitability. medRxiv pp. 2023–01 (2023) Yalcinkaya, B.H., et al.: Personalized virtual brains of Alzheimer’s disease link dynamical biomarkers of fMRI with increased local excitability. medRxiv pp. 2023–01 (2023)
31.
Zurück zum Zitat Yang, G.J., et al.: Functional hierarchy underlies preferential connectivity disturbances in Schizophrenia. Proc. Natl. Acad. Sci. 113(2), E219–E228 (2016)CrossRef Yang, G.J., et al.: Functional hierarchy underlies preferential connectivity disturbances in Schizophrenia. Proc. Natl. Acad. Sci. 113(2), E219–E228 (2016)CrossRef
32.
Zurück zum Zitat Zhuang, J., et al.: AdaBelief optimizer: adapting Stepsizes by the belief in observed gradients. In: Conference on Neural Information Processing Systems (2020) Zhuang, J., et al.: AdaBelief optimizer: adapting Stepsizes by the belief in observed gradients. In: Conference on Neural Information Processing Systems (2020)
Metadaten
Titel
A Data-Driven Framework for Whole-Brain Network Modeling with Simultaneous EEG-SEEG Data
verfasst von
Kexin Lou
Jingzhe Li
Markus Barth
Quanying Liu
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_24