Skip to main content

2025 | OriginalPaper | Buchkapitel

A Deep Convolution Multifractal Analysis Using Principle Line Extraction Approach for Palmprint Recognition System

verfasst von : B. Abirami, K. Krishnaveni

Erschienen in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research study proposes a unique deep learning classifier using palm hand’s principle lines extraction approach for the palmprint recognition system. A Deep Convolution Multifractal Analysis Model for Palmprint Recognition (DCMAPR) is proposed to reveal the novelty. In pre-processing, the principle line feature is extracted using morphological operations and edge detection algorithm. For the feature extraction technique, multifractal analysis is used. To perform the techniques, Box-counting and Gliding-Box algorithms are performed for multifractal analysis. To more accurately authenticate the real person of the captured palmprint, classify this feature vector using Convolution Neural Network (CNN) classifier technique. The multi-spectral 2D-PROI image database used in this study came from POLYU, the Hong Kong Polytechnic University in Hong Kong. The proposed scheme has undergone scrutiny and evaluation using numerous criteria, and it has been determined to have 99.25% authentication accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Guennouni S, Mansouri A, Ahaitouf A (2019) Biometric systems and their applications. In: Visual impairment and blindness-what we know and what we have to know. IntechOpen Guennouni S, Mansouri A, Ahaitouf A (2019) Biometric systems and their applications. In: Visual impairment and blindness-what we know and what we have to know. IntechOpen
2.
Zurück zum Zitat El-Tarhouni W, Boubchir L, Elbendak M, Bouridane A (2019) Multispectral palmprint recognition using Pascal coefficients-based LBP and PHOG descriptors with random sampling. Neural Comput Appl 31(2):593–603 El-Tarhouni W, Boubchir L, Elbendak M, Bouridane A (2019) Multispectral palmprint recognition using Pascal coefficients-based LBP and PHOG descriptors with random sampling. Neural Comput Appl 31(2):593–603
4.
Zurück zum Zitat Apolinario AC, Sindeaux R, de Souza Figueiredo PT, Guima-raes AT, Acevedo AC, Castro LC et al (2016) Dental panoramic indices and fractal dimension measurements in osteogenesis imperfect children under pamidronate treatment. Dentomaxillofac Radiol 45:20150400CrossRef Apolinario AC, Sindeaux R, de Souza Figueiredo PT, Guima-raes AT, Acevedo AC, Castro LC et al (2016) Dental panoramic indices and fractal dimension measurements in osteogenesis imperfect children under pamidronate treatment. Dentomaxillofac Radiol 45:20150400CrossRef
5.
Zurück zum Zitat Gumussoy I, Miloglu O, Cankaya E, Bayrakdar IS (2016) Fractal properties of the trabecular pattern of the mandible in chronic renal failure. Dentomaxillofac Radiol 45:20150389CrossRef Gumussoy I, Miloglu O, Cankaya E, Bayrakdar IS (2016) Fractal properties of the trabecular pattern of the mandible in chronic renal failure. Dentomaxillofac Radiol 45:20150389CrossRef
6.
Zurück zum Zitat Bhowmik MK, Roy A, Gogoi UR, Nath N (2017) Estimation of architectural distortion in mammograms using fractal features. In: 2017 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE, pp 1–3 Bhowmik MK, Roy A, Gogoi UR, Nath N (2017) Estimation of architectural distortion in mammograms using fractal features. In: 2017 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE, pp 1–3
7.
Zurück zum Zitat So GB, So HR, Jin GG (2017) Enhancement of the box-counting algorithm for fractal dimension estimation. Pattern Recogn Lett 98:53–58CrossRef So GB, So HR, Jin GG (2017) Enhancement of the box-counting algorithm for fractal dimension estimation. Pattern Recogn Lett 98:53–58CrossRef
8.
Zurück zum Zitat Hsui CY, Wang CC (2013) Synergy between fractal dimension and lacunarity index in design of artificial habitat for alternative SCUBA diving site. Ecol Eng 53:6–14CrossRef Hsui CY, Wang CC (2013) Synergy between fractal dimension and lacunarity index in design of artificial habitat for alternative SCUBA diving site. Ecol Eng 53:6–14CrossRef
9.
Zurück zum Zitat Barros Filho MN, Sobreira FA (2008) Accuracy of lacunarity algorithms in texture classification of high spatial resolution images from urban areas. In XXI Congress of International Society of Photogrammetry and Remote Sensing, pp. 417–422 Barros Filho MN, Sobreira FA (2008) Accuracy of lacunarity algorithms in texture classification of high spatial resolution images from urban areas. In XXI Congress of International Society of Photogrammetry and Remote Sensing, pp. 417–422
10.
Zurück zum Zitat Myint SW, Lam N (2005) A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput Environ Urban Syst 29(5):501–523CrossRef Myint SW, Lam N (2005) A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput Environ Urban Syst 29(5):501–523CrossRef
11.
Zurück zum Zitat Allain C, Cloitre M (1991) Characterizing lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558MathSciNetCrossRef Allain C, Cloitre M (1991) Characterizing lacunarity of random and deterministic fractal sets. Phys Rev A 44:3552–3558MathSciNetCrossRef
12.
Zurück zum Zitat Sarkar N, Chaudhur B (1992) An efficient approach to estimate fractal dimension of texture images. Pattern Recogn 25:1035–1041CrossRef Sarkar N, Chaudhur B (1992) An efficient approach to estimate fractal dimension of texture images. Pattern Recogn 25:1035–1041CrossRef
13.
Zurück zum Zitat Dong P (2000) Test of a new lacunarity estimation method for image texture analysis. Int J Remote Sens 21(17):3369–3373CrossRef Dong P (2000) Test of a new lacunarity estimation method for image texture analysis. Int J Remote Sens 21(17):3369–3373CrossRef
14.
Zurück zum Zitat Harte D (2001) Multifractals: theory and applications. Chapman and Hall/CRC, Boca Raton Harte D (2001) Multifractals: theory and applications. Chapman and Hall/CRC, Boca Raton
15.
Zurück zum Zitat Rendón de la Torre S, Kalda J, Kitt R, Engelbrecht J (2017) Fractal and multifractal analysis of complex networks: Estonian network of payments. Eur Phys J B 90(12):1–8MathSciNetCrossRef Rendón de la Torre S, Kalda J, Kitt R, Engelbrecht J (2017) Fractal and multifractal analysis of complex networks: Estonian network of payments. Eur Phys J B 90(12):1–8MathSciNetCrossRef
16.
Zurück zum Zitat Muchtar M, Suciati N, Fatichah C (2016) Fractal dimension and lacunarity combination for plant leaf classification. Jurnal Ilmu Komputer dan Informasi 9(2):96–105CrossRef Muchtar M, Suciati N, Fatichah C (2016) Fractal dimension and lacunarity combination for plant leaf classification. Jurnal Ilmu Komputer dan Informasi 9(2):96–105CrossRef
17.
Zurück zum Zitat Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
18.
Zurück zum Zitat Matějka P, Zhang L, Ng T, Mallidi HS, Glembek O, Ma J et al (2014) Neural network bottleneck features for language identification. In: Proceedings of Odyssey 2014, vol 2014. International Speech Communication Association, pp 299–304 Matějka P, Zhang L, Ng T, Mallidi HS, Glembek O, Ma J et al (2014) Neural network bottleneck features for language identification. In: Proceedings of Odyssey 2014, vol 2014. International Speech Communication Association, pp 299–304
19.
Zurück zum Zitat Lozano-Diez A, Zazo R, Doroteo Toledano T, Gonzalez-Rodriguez J (2017) An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition. PLOS ONE Lozano-Diez A, Zazo R, Doroteo Toledano T, Gonzalez-Rodriguez J (2017) An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition. PLOS ONE
20.
Zurück zum Zitat Samai D, Bensid K, Meraoumia A, Taleb-Ahmed A, Bedda M (2008) 2D and 3D palmprint recognition using deep learning method. IEEE, 978-1-5386-4238-2 Samai D, Bensid K, Meraoumia A, Taleb-Ahmed A, Bedda M (2008) 2D and 3D palmprint recognition using deep learning method. IEEE, 978-1-5386-4238-2
21.
Zurück zum Zitat Hsui C-Y, Wang C-C (2013) Synergy between fractal dimension and lacuarity index in design of artificial habitat for alternative SGUBA divine set. Ecol Eng 53:6–14CrossRef Hsui C-Y, Wang C-C (2013) Synergy between fractal dimension and lacuarity index in design of artificial habitat for alternative SGUBA divine set. Ecol Eng 53:6–14CrossRef
22.
Zurück zum Zitat Michele A, Colin V, Santika DD (2019) Mobilenet convolutional neural networks and support vector machines for palmprint recognition. Procedia Comput Sci 157:110–117CrossRef Michele A, Colin V, Santika DD (2019) Mobilenet convolutional neural networks and support vector machines for palmprint recognition. Procedia Comput Sci 157:110–117CrossRef
23.
Zurück zum Zitat Tunkpien P, Panduwadeethorn S, Phimoltares S (2010) Compact extraction of principal lines in palmprint using consecutive filtering operations. In: Proceedings of the second international conference on knowledge and smart technologies, pp 39–44 Tunkpien P, Panduwadeethorn S, Phimoltares S (2010) Compact extraction of principal lines in palmprint using consecutive filtering operations. In: Proceedings of the second international conference on knowledge and smart technologies, pp 39–44
24.
Zurück zum Zitat Imtiaz H, Fattah SA (2010) A DCT- based feature extraction algorithm for palmprint recognition. In: ICCCCT’10: IEEE, pp 657–660. Imtiaz H, Fattah SA (2010) A DCT- based feature extraction algorithm for palmprint recognition. In: ICCCCT’10: IEEE, pp 657–660.
25.
Zurück zum Zitat Kong A, Zhang D, Kamel M (2009) A survey of palmprint recognition. Pattern Recogn 42:1408–1418CrossRef Kong A, Zhang D, Kamel M (2009) A survey of palmprint recognition. Pattern Recogn 42:1408–1418CrossRef
26.
Zurück zum Zitat Wu X, Wang K, Zhang D (2004) An approach to line feature representation and matching for palmprint recognition. J Software 15(6):870–880 Wu X, Wang K, Zhang D (2004) An approach to line feature representation and matching for palmprint recognition. J Software 15(6):870–880
27.
Zurück zum Zitat Falconer K (2003) Fractal geometry: mathematical foundations and applications, 2nd edn. Wiley, New York Falconer K (2003) Fractal geometry: mathematical foundations and applications, 2nd edn. Wiley, New York
28.
Zurück zum Zitat Kadhm MS, Ayad H, Mohammed MJ (2021) Palmprint recognition system based on proposed features extraction and (C5. 0) decision tree, K-nearest neighbour (KNN) classification approaches. J Eng Sci Technol 16(1):816–831 Kadhm MS, Ayad H, Mohammed MJ (2021) Palmprint recognition system based on proposed features extraction and (C5. 0) decision tree, K-nearest neighbour (KNN) classification approaches. J Eng Sci Technol 16(1):816–831
29.
Zurück zum Zitat Bruno A, Carminetti P, Gentile V, La Cascia M, Mancino E (2014) Palmprint principal lines extraction. In: 2014 IEEE Workshop on biometric measurements and systems for security and medical applications (BIOMS) proceedings. IEEE, pp 50–56 Bruno A, Carminetti P, Gentile V, La Cascia M, Mancino E (2014) Palmprint principal lines extraction. In: 2014 IEEE Workshop on biometric measurements and systems for security and medical applications (BIOMS) proceedings. IEEE, pp 50–56
30.
Zurück zum Zitat Fan Y, Li J, Song S, Zhang H, Wang S, Zhai G (2022) Palmprint phenotype feature extraction and classification based on deep learning. Phenomics 2(4):219–229CrossRef Fan Y, Li J, Song S, Zhang H, Wang S, Zhai G (2022) Palmprint phenotype feature extraction and classification based on deep learning. Phenomics 2(4):219–229CrossRef
31.
Zurück zum Zitat Satish M, Rani KJ (2022) Implementation of palmprint recognition system using GLCM-PCA based DLCNN Satish M, Rani KJ (2022) Implementation of palmprint recognition system using GLCM-PCA based DLCNN
33.
Zurück zum Zitat Shakil S, Arora D, Zaidi T (2022) Feature identification and classification of hand based biometrics through ensemble learning approach. Measure Sens 100593 Shakil S, Arora D, Zaidi T (2022) Feature identification and classification of hand based biometrics through ensemble learning approach. Measure Sens 100593
Metadaten
Titel
A Deep Convolution Multifractal Analysis Using Principle Line Extraction Approach for Palmprint Recognition System
verfasst von
B. Abirami
K. Krishnaveni
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_26