Skip to main content

2023 | OriginalPaper | Buchkapitel

A Deep Learning Approach for Detection and Segmentation of Airplanes in Ultrahigh-Spatial-Resolution UAV Dataset

verfasst von : Parul Dhingra, Hina Pande, Poonam S. Tiwari, Shefali Agrawal

Erschienen in: Proceedings of UASG 2021: Wings 4 Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advancements in unmanned aerial vehicle (UAV) technology have enabled the acquisition of images of a geographical area with higher spatial resolutions as compared to images acquired by satellites. Detection and segmentation of objects in such ultrahigh-spatial-resolution (UHSR) images possess the potential to effectively facilitate several applications of remote sensing such as airport surveillance, urban studies, road traffic monitoring crop monitoring, etc. Investigating these images for target extraction tasks turns out to be quite challenging, in the terms of the involved computation complexities, owing to their high spatial resolutions and information content. Due to the development of several deep learning algorithms and advanced computing tools, there exists a possibility of harnessing this information for computer vision tasks. Manual surveillance of airports or similar areas and manual annotation of images are cost-intensive and prone to human-induced errors. Therefore, there exists a substantial requirement of automating the task of keeping track of the airplanes parked on the premises of airports for civil and military services. With this paper, we propose a framework for detecting and segmenting such airplanes in UHSR images with supervised machine learning algorithms. To detect the target i.e., airplanes, MobileNets-deep neural network is trained, whereas to segment the target, U-Net-convolutional neural network is trained with our dataset. Further, the performance analysis of the trained deep neural networks is presented. The UHSR image dataset utilized in this research work is an airport dataset provided by SenseFly. Data is acquired by eBee classic drones, flying at a height of 393.7 ft., which provide 2D-RGB images with a ground resolution of 3.14 cm/px.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shakhatreh H et al (2019) Unmanned Aerial Vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634CrossRef Shakhatreh H et al (2019) Unmanned Aerial Vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634CrossRef
2.
Zurück zum Zitat Wang S, Han Y, Chen J, Zhang Z, Wang G, Du N (2018) A deep-learning-based sea search and rescue algorithm by UAV remote sensing. In: IEEE CSAA guidance, navigation, and control conference (CGNCC), pp 1–5 Wang S, Han Y, Chen J, Zhang Z, Wang G, Du N (2018) A deep-learning-based sea search and rescue algorithm by UAV remote sensing. In: IEEE CSAA guidance, navigation, and control conference (CGNCC), pp 1–5
3.
Zurück zum Zitat Jensen AM, Neilson BT, McKee M, Chen Y (2012) Thermal remote sensing with an autonomous unmanned aerial remote sensing platform for surface stream temperatures. In: IEEE international geoscience and remote sensing symposium, pp 5049–5052 Jensen AM, Neilson BT, McKee M, Chen Y (2012) Thermal remote sensing with an autonomous unmanned aerial remote sensing platform for surface stream temperatures. In: IEEE international geoscience and remote sensing symposium, pp 5049–5052
4.
Zurück zum Zitat Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almait E, Khalil I et al (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634CrossRef Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almait E, Khalil I et al (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634CrossRef
5.
Zurück zum Zitat Hwang S, Lee J, Shin H, Cho S, Hyunchul Shim D (2018) Aircraft detection using deep convolutional neural network for small unmanned aircraft systems. AIAA Information Systems-AIAA Infotech @ Aerospace Hwang S, Lee J, Shin H, Cho S, Hyunchul Shim D (2018) Aircraft detection using deep convolutional neural network for small unmanned aircraft systems. AIAA Information Systems-AIAA Infotech @ Aerospace
6.
Zurück zum Zitat Lee A (2016) Comparing deep neural networks and traditional vision algorithms in mobile robotics Lee A (2016) Comparing deep neural networks and traditional vision algorithms in mobile robotics
7.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention—MICCAI, Springer International Publishing, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention—MICCAI, Springer International Publishing, pp 234–241
8.
Zurück zum Zitat Ciresan DC, Gambardella LM, Giusti A, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. NIPS, pp 2852–2860 Ciresan DC, Gambardella LM, Giusti A, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. NIPS, pp 2852–2860
9.
10.
Zurück zum Zitat Ghosh SK (2012) Digital image processing Ghosh SK (2012) Digital image processing
11.
Zurück zum Zitat Haykin SS (2009) Neural networks and learning machines, 3rd edn. Pearson Education, Upper Saddle River, NJ Haykin SS (2009) Neural networks and learning machines, 3rd edn. Pearson Education, Upper Saddle River, NJ
12.
Zurück zum Zitat Aggarwal CC (2018) Neural networks and deep learning. Springer International Publishing AG Aggarwal CC (2018) Neural networks and deep learning. Springer International Publishing AG
13.
Zurück zum Zitat Airport Dataset, SenseFly parrot group Airport Dataset, SenseFly parrot group
14.
Zurück zum Zitat Pathak AR, Pandey M, Rautaray S (2018) Application of deep learning for object detection. In: International conference on computational intelligence and data science. Procedia Comput Sci 132:1706–1717 Pathak AR, Pandey M, Rautaray S (2018) Application of deep learning for object detection. In: International conference on computational intelligence and data science. Procedia Comput Sci 132:1706–1717
15.
Zurück zum Zitat Alganci U, Soydas M, Sertel E (2020) Comparative research on deep learning approaches for airplane detection from very high-resolution satellite images. Remote Sens 12(3):458CrossRef Alganci U, Soydas M, Sertel E (2020) Comparative research on deep learning approaches for airplane detection from very high-resolution satellite images. Remote Sens 12(3):458CrossRef
16.
Zurück zum Zitat Labeling: graphical image annotation tool, MIT License Labeling: graphical image annotation tool, MIT License
17.
Zurück zum Zitat Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: IEEE/CVF conference on computer vision and pattern recognition, pp 4510–4520 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: IEEE/CVF conference on computer vision and pattern recognition, pp 4510–4520
18.
Zurück zum Zitat Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T et al (2017) Mobilenets. CoRR. abs/1704.04861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T et al (2017) Mobilenets. CoRR. abs/1704.04861
19.
Zurück zum Zitat Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y et al (2016) SSD: single shot multibox detector. Computer Vision—ECCV, Springer International Publishing, pp 21–37 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y et al (2016) SSD: single shot multibox detector. Computer Vision—ECCV, Springer International Publishing, pp 21–37
20.
Zurück zum Zitat Bassiouny A, El-Saban M (2014) Semantic segmentation as image representation for scene recognition. In: IEEE international conference on image processing (ICIP), pp 981–985 Bassiouny A, El-Saban M (2014) Semantic segmentation as image representation for scene recognition. In: IEEE international conference on image processing (ICIP), pp 981–985
21.
Zurück zum Zitat Chhor G, Bartolome Aramburu C (2017) Satellite image segmentation for building detection using –U-net- report. Stanford University Chhor G, Bartolome Aramburu C (2017) Satellite image segmentation for building detection using –U-net- report. Stanford University
22.
Zurück zum Zitat Chengwei (2019) How to train an object detection model Chengwei (2019) How to train an object detection model
23.
Zurück zum Zitat Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al (2014) Pi. Microsoft coco: common objects in context. Computer Vision—ECCV, Springer International Publishing, pp 740–755 Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al (2014) Pi. Microsoft coco: common objects in context. Computer Vision—ECCV, Springer International Publishing, pp 740–755
24.
Zurück zum Zitat Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: IEEE conference on computer vision and pattern recognition, pp 2155–2162 Erhan D, Szegedy C, Toshev A, Anguelov D (2014) Scalable object detection using deep neural networks. In: IEEE conference on computer vision and pattern recognition, pp 2155–2162
25.
Zurück zum Zitat Padilla R, Passos WL, Dias TLB, Netto SL, da Silva EAB (2021) A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics 10:279CrossRef Padilla R, Passos WL, Dias TLB, Netto SL, da Silva EAB (2021) A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics 10:279CrossRef
26.
Zurück zum Zitat Ho Y, Wookey S (2020) The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8:4806–4813CrossRef Ho Y, Wookey S (2020) The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8:4806–4813CrossRef
27.
Zurück zum Zitat Bharatha A, Zou KH, Warfield SK et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11(2):178–189 Bharatha A, Zou KH, Warfield SK et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11(2):178–189
Metadaten
Titel
A Deep Learning Approach for Detection and Segmentation of Airplanes in Ultrahigh-Spatial-Resolution UAV Dataset
verfasst von
Parul Dhingra
Hina Pande
Poonam S. Tiwari
Shefali Agrawal
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-19309-5_16