Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

Erschienen in:
Buchtitelbild

2018 | Supplement | Buchkapitel

A Deep Learning Approach for Valve Defect Recognition in Heart Acoustic Signal

share
TEILEN

Abstract

The analysis of phonocardiogram (PCG), although considered as well established in a clinical application, still constitutes the valuable source of diagnostic data. Currently, electronic auscultation provides digital signals which can be processed in order to automatically evaluate the condition of heart or lungs. In this paper, we propose a novel approach for the classification of phonocardiographic signals. We extracted a set of time-frequency parameters which enable to effectively differentiate between normal and abnormal heart beats (with valve defects). These features have constituted an input of the convolutional neural network, which we used for classification of pathological signals. The Aalborg University heart sounds database from PhysioNet/Computing in Cardiology Challenge 2016 was used for verification of developed algorithms. We obtained 99.1% sensitivity and 91.6% specificity on the test data, which is motivational for further research.
Literatur
1.
Zurück zum Zitat Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E.W., Syed, Z., Schmidt, S.E., Papadaniil, C.D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M.R., Sameni, R., Mark, R.G., Clifford, G.D.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37, 2181–2213 (2016) CrossRef Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E.W., Syed, Z., Schmidt, S.E., Papadaniil, C.D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M.R., Sameni, R., Mark, R.G., Clifford, G.D.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37, 2181–2213 (2016) CrossRef
2.
Zurück zum Zitat Ray, R., Chambers, J.: Mitral valve disease. Int. J. Clin. Pract. 68, 1216–1220 (2014) CrossRef Ray, R., Chambers, J.: Mitral valve disease. Int. J. Clin. Pract. 68, 1216–1220 (2014) CrossRef
3.
Zurück zum Zitat Sun, S., Jiang, Z., Wang, H., Fang, Y.: Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput. Methods Programs Biomed. 114, 219–230 (2014) CrossRef Sun, S., Jiang, Z., Wang, H., Fang, Y.: Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput. Methods Programs Biomed. 114, 219–230 (2014) CrossRef
4.
Zurück zum Zitat Varghees, V.N., Ramachandran, K.I.: A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 13, 174–188 (2014) CrossRef Varghees, V.N., Ramachandran, K.I.: A novel heart sound activity detection framework for automated heart sound analysis. Biomed. Signal Process. Control 13, 174–188 (2014) CrossRef
5.
Zurück zum Zitat Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7, 509–516 (2012) CrossRef Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7, 509–516 (2012) CrossRef
6.
Zurück zum Zitat Sedighian, P., Subudhi, A.W., Scalzo, F., Asgari, S.: Pediatric heart sound segmentation using Hidden Markov Model. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5490–5493. IEEE (2014) Sedighian, P., Subudhi, A.W., Scalzo, F., Asgari, S.: Pediatric heart sound segmentation using Hidden Markov Model. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5490–5493. IEEE (2014)
7.
Zurück zum Zitat Uguz, H.: A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. J. Med. Syst. 36, 61–72 (2012) CrossRef Uguz, H.: A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. J. Med. Syst. 36, 61–72 (2012) CrossRef
8.
Zurück zum Zitat Zheng, Y., Guo, X., Ding, X.: A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification. Expert Syst. Appl. 42, 2710–2721 (2015) CrossRef Zheng, Y., Guo, X., Ding, X.: A novel hybrid energy fraction and entropy-based approach for systolic heart murmurs identification. Expert Syst. Appl. 42, 2710–2721 (2015) CrossRef
9.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
10.
Zurück zum Zitat Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015) Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
11.
Zurück zum Zitat Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al.: Deep speech 2: end-to-end speech recognition in english and mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016) Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al.: Deep speech 2: end-to-end speech recognition in english and mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)
12.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Res. 15, 1929–1958 (2014) MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Res. 15, 1929–1958 (2014) MathSciNetMATH
13.
Zurück zum Zitat Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011) MathSciNetMATH Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011) MathSciNetMATH
Metadaten
Titel
A Deep Learning Approach for Valve Defect Recognition in Heart Acoustic Signal
verfasst von
Dariusz Kucharski
Dominik Grochala
Marcin Kajor
Eliasz Kańtoch
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67220-5_1

Premium Partner