Skip to main content
Erschienen in: Microsystem Technologies 1/2019

06.07.2018 | Technical Paper

A design method for nanofluidic circuits

verfasst von: Yongbin Zhang

Erschienen in: Microsystem Technologies | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A design method is proposed for nanofluidic circuits, based on the flow equation for a nanoscale fluid flow. This method incorporates the use of the concepts of the flow resistance, the flow rate, the pressure drop and the power loss, as like in electric circuits. The equations for calculating the flow resistance and the power loss in exemplary nanofluidic circuits including in a nanotube tree are presented. It was found that the nanotube size and the fluid-tube wall interaction both have great influences on the flow resistance and the power loss in nanochannel flow. Exemplary design analysis is given for some nanofluidic circuits, based on the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham FF (1978) The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J Chem Phys 68:3713–3716CrossRef Abraham FF (1978) The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J Chem Phys 68:3713–3716CrossRef
Zurück zum Zitat Aguillela VM, Alcaraz A (2009) A fluid approach to simple circuits. Nat Nanotech 4:403–404CrossRef Aguillela VM, Alcaraz A (2009) A fluid approach to simple circuits. Nat Nanotech 4:403–404CrossRef
Zurück zum Zitat Ahn DJ (2008) Nano pump using molecular motor. US Patent App. 12/200,888 Ahn DJ (2008) Nano pump using molecular motor. US Patent App. 12/200,888
Zurück zum Zitat Alibakhshi MA, Xie Q, Li Y, Duan C (2016) Accurate measurement of liquid transport through nanoscale conduits. Sci Rep 6:24936CrossRef Alibakhshi MA, Xie Q, Li Y, Duan C (2016) Accurate measurement of liquid transport through nanoscale conduits. Sci Rep 6:24936CrossRef
Zurück zum Zitat Aubert JH, Tirrell M (1982) Effective viscosity of dilute polymer solutions near confining boundaries. J Chem Phys 77:553–561CrossRef Aubert JH, Tirrell M (1982) Effective viscosity of dilute polymer solutions near confining boundaries. J Chem Phys 77:553–561CrossRef
Zurück zum Zitat Bitsanis I, Magda JJ, Tirrell M, Davis HT (1987) Molecular dynamics of flow in micropores. J Chem Phys 87:1733–1750CrossRef Bitsanis I, Magda JJ, Tirrell M, Davis HT (1987) Molecular dynamics of flow in micropores. J Chem Phys 87:1733–1750CrossRef
Zurück zum Zitat Bojko A, Andreatta G, Montagne F, Renaud P, Pugin R (2014) Fabrication of thermo-responsive nano-valve by grafting-to in melt of poly(N-isopropylacrylamide) onto nanoporous silicon nitride membranes. J Membr Sci 468:118–125CrossRef Bojko A, Andreatta G, Montagne F, Renaud P, Pugin R (2014) Fabrication of thermo-responsive nano-valve by grafting-to in melt of poly(N-isopropylacrylamide) onto nanoporous silicon nitride membranes. J Membr Sci 468:118–125CrossRef
Zurück zum Zitat Chan DYC, Horn RG (1985) The drainage of thin liquid films between solid surfaces. J Chem Phys 83:5311–5324CrossRef Chan DYC, Horn RG (1985) The drainage of thin liquid films between solid surfaces. J Chem Phys 83:5311–5324CrossRef
Zurück zum Zitat Chauveteau G, Tirrell M, Omari A (1984) Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls. J Coll Int Sci 100:41–54CrossRef Chauveteau G, Tirrell M, Omari A (1984) Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls. J Coll Int Sci 100:41–54CrossRef
Zurück zum Zitat Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142CrossRef Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142CrossRef
Zurück zum Zitat Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280CrossRef Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280CrossRef
Zurück zum Zitat Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotech 5:848–852CrossRef Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotech 5:848–852CrossRef
Zurück zum Zitat Fuest M, Boone C, Rangharajan KK, Conlisk AT, Prakash S (2015) A three-state nanofluidic field effect switch. Nano Lett 15:2365–2371CrossRef Fuest M, Boone C, Rangharajan KK, Conlisk AT, Prakash S (2015) A three-state nanofluidic field effect switch. Nano Lett 15:2365–2371CrossRef
Zurück zum Zitat Fuest M, Rangharajan KK, Boone C, Conlisk AT, Prakash S (2017) Cation dependent surface charge regulation in gated nanofluidic devices. Anal Chem 89:1593–1601CrossRef Fuest M, Rangharajan KK, Boone C, Conlisk AT, Prakash S (2017) Cation dependent surface charge regulation in gated nanofluidic devices. Anal Chem 89:1593–1601CrossRef
Zurück zum Zitat Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408CrossRef Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408CrossRef
Zurück zum Zitat Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, Atieh MA, Rahman F, Laoui T, Karnik R, Wang EN (2011) Nanostructured materials for water desalination. Nanotech 22:292001CrossRef Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, Atieh MA, Rahman F, Laoui T, Karnik R, Wang EN (2011) Nanostructured materials for water desalination. Nanotech 22:292001CrossRef
Zurück zum Zitat Jabbarzadeh A, Atkinson JD, Tanner RI (1997) Rheological properties of thin liquid films by molecular dynamics simulations. J Nonnewton Fluid Mech 69:169–193CrossRef Jabbarzadeh A, Atkinson JD, Tanner RI (1997) Rheological properties of thin liquid films by molecular dynamics simulations. J Nonnewton Fluid Mech 69:169–193CrossRef
Zurück zum Zitat Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRef Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRef
Zurück zum Zitat Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114CrossRef Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114CrossRef
Zurück zum Zitat Kasiteropoulou D, Karakasidis TE, Liakopoulos A (2013) Mesoscopic simulation of fluid flow in periodically grooved microchannels. Comput Fluids 74:91–101CrossRefMATH Kasiteropoulou D, Karakasidis TE, Liakopoulos A (2013) Mesoscopic simulation of fluid flow in periodically grooved microchannels. Comput Fluids 74:91–101CrossRefMATH
Zurück zum Zitat Lee KP, Leese H, Matia D (2012) Water flow enhancement in hydrophilic nanochannels. Nanoscale 4:2621–2627CrossRef Lee KP, Leese H, Matia D (2012) Water flow enhancement in hydrophilic nanochannels. Nanoscale 4:2621–2627CrossRef
Zurück zum Zitat Liakopoulos A, Sofos F, Karakasidis TE (2016) Friction factor in nanochannel flows. Microfluid Nanofluid 20:24–30CrossRef Liakopoulos A, Sofos F, Karakasidis TE (2016) Friction factor in nanochannel flows. Microfluid Nanofluid 20:24–30CrossRef
Zurück zum Zitat Liakopoulos A, Sofos F, Karakasidis TE (2017) Darcy–Weisbach friction factor at the nanoscale: from atomistic calculations to continuum models. Phys Fluids 29:052003CrossRef Liakopoulos A, Sofos F, Karakasidis TE (2017) Darcy–Weisbach friction factor at the nanoscale: from atomistic calculations to continuum models. Phys Fluids 29:052003CrossRef
Zurück zum Zitat Magda JJ, Tirrell M, Davis HT (1985) Molecular dynamics of narrow, liquid-filled Pores. J Chem Phys 83:1888–1901CrossRef Magda JJ, Tirrell M, Davis HT (1985) Molecular dynamics of narrow, liquid-filled Pores. J Chem Phys 83:1888–1901CrossRef
Zurück zum Zitat Meyer E, Overney RM, Dransfeld K, Gyalog T (1998) Nanoscience-friction and rheology on the nanometer scale. World Scientific Press, River edgeCrossRef Meyer E, Overney RM, Dransfeld K, Gyalog T (1998) Nanoscience-friction and rheology on the nanometer scale. World Scientific Press, River edgeCrossRef
Zurück zum Zitat Perry JL, Kandlikar SG (2006) Review of fabrication of nanochannels for single phase liquid flow. Microfluid Nanofluid 2:185–193CrossRef Perry JL, Kandlikar SG (2006) Review of fabrication of nanochannels for single phase liquid flow. Microfluid Nanofluid 2:185–193CrossRef
Zurück zum Zitat Pinti M, Kambham T, Wang B, Prakash S (2013) Fabrication of centimeter long, ultra-low aspect ratio nanochannel networks in borosilicate glass substrates. ASME J Nanotech Eng Med 4:021003CrossRef Pinti M, Kambham T, Wang B, Prakash S (2013) Fabrication of centimeter long, ultra-low aspect ratio nanochannel networks in borosilicate glass substrates. ASME J Nanotech Eng Med 4:021003CrossRef
Zurück zum Zitat Piruska A, Gong M, Sweedler JV, Bohn PW (2010) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072CrossRef Piruska A, Gong M, Sweedler JV, Bohn PW (2010) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072CrossRef
Zurück zum Zitat Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155CrossRef Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155CrossRef
Zurück zum Zitat Prakash S, Conlisk AT (2016) Field effect nanofluidics. Lab Chip 16:3855–3865CrossRef Prakash S, Conlisk AT (2016) Field effect nanofluidics. Lab Chip 16:3855–3865CrossRef
Zurück zum Zitat Prakash S, Zambrano H, Rosenthal-Kim EQ (2015) Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluid 19:1455–1464CrossRef Prakash S, Zambrano H, Rosenthal-Kim EQ (2015) Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluid 19:1455–1464CrossRef
Zurück zum Zitat Rahmatipour H, Azimian AR, Atlaschian O (2017) Study of fluid flow behavior in smooth and rough nanochannels through oscillatory wall by molecular dynamics simulation. Physica A Stat Mech Appl 465:159–174CrossRef Rahmatipour H, Azimian AR, Atlaschian O (2017) Study of fluid flow behavior in smooth and rough nanochannels through oscillatory wall by molecular dynamics simulation. Physica A Stat Mech Appl 465:159–174CrossRef
Zurück zum Zitat Sofos F, Karakasidis TE, Liakopoulos A (2013) Parameters affecting the slip length at the nanoscale. J Comput Theor Nanosci 10:648–650CrossRef Sofos F, Karakasidis TE, Liakopoulos A (2013) Parameters affecting the slip length at the nanoscale. J Comput Theor Nanosci 10:648–650CrossRef
Zurück zum Zitat Somers SA, Davis HT (1992) Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces. J Chem Phys 96:5389–5407CrossRef Somers SA, Davis HT (1992) Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces. J Chem Phys 96:5389–5407CrossRef
Zurück zum Zitat Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phy Rev Lett 93:035901CrossRef Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phy Rev Lett 93:035901CrossRef
Zurück zum Zitat Takaba H, Onumata Y, Nakao S (2007) Molecular simulation of pressure-driven fluid flow in nanoporous membranes. J Chem Phys 127:054703CrossRef Takaba H, Onumata Y, Nakao S (2007) Molecular simulation of pressure-driven fluid flow in nanoporous membranes. J Chem Phys 127:054703CrossRef
Zurück zum Zitat Wei C (2007) Implantable nano pump for drug delivery. US Patent App. 11/906,238 Wei C (2007) Implantable nano pump for drug delivery. US Patent App. 11/906,238
Zurück zum Zitat Yu M, Falconer JL, Amundsen TJ, Hong M, Noble RD (2007) A controllable nanometer-sized valve. Adv Mater 19:3032–3036CrossRef Yu M, Falconer JL, Amundsen TJ, Hong M, Noble RD (2007) A controllable nanometer-sized valve. Adv Mater 19:3032–3036CrossRef
Zurück zum Zitat Zhang YB (2006) Flow factor of non-continuum fluids in one-dimensional flow. Ind Lubr Tribol 58:151–169CrossRef Zhang YB (2006) Flow factor of non-continuum fluids in one-dimensional flow. Ind Lubr Tribol 58:151–169CrossRef
Zurück zum Zitat Zhang YB (2015) A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film. Theor Comput Fluid Dyn 29:193–204CrossRef Zhang YB (2015) A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film. Theor Comput Fluid Dyn 29:193–204CrossRef
Zurück zum Zitat Zhang YB (2016a) The flow equation for a nanoscale fluid flow. Int J Heat Mass Transf 92:1004–1008CrossRef Zhang YB (2016a) The flow equation for a nanoscale fluid flow. Int J Heat Mass Transf 92:1004–1008CrossRef
Zurück zum Zitat Zhang YB (2016b) Calculating the maximum flowing velocity of the Poiseuille flow in a nano channel by the flow factor approach model. Int Commun Heat Mass Transf 73:111–113CrossRef Zhang YB (2016b) Calculating the maximum flowing velocity of the Poiseuille flow in a nano channel by the flow factor approach model. Int Commun Heat Mass Transf 73:111–113CrossRef
Zurück zum Zitat Zhang YB (2016c) Effect of wall surface roughness on the mass transfer in a nano channel. Int J Heat Mass Transf 100:295–302CrossRef Zhang YB (2016c) Effect of wall surface roughness on the mass transfer in a nano channel. Int J Heat Mass Transf 100:295–302CrossRef
Zurück zum Zitat Zhang YB (2017a) Transport in nanotube tree. Int J Heat Mass Transf 114:536–540CrossRef Zhang YB (2017a) Transport in nanotube tree. Int J Heat Mass Transf 114:536–540CrossRef
Zurück zum Zitat Zhang YB (2017b) Influence of pore wall surface property on flux of nanoporous filtering membrane. Front Heat Mass Transf 9:26 Zhang YB (2017b) Influence of pore wall surface property on flux of nanoporous filtering membrane. Front Heat Mass Transf 9:26
Zurück zum Zitat Zhang W, Li D (2007) Simulation of low speed 3D nanochannel flow. Microfluid Nanofluid 3:417–425CrossRef Zhang W, Li D (2007) Simulation of low speed 3D nanochannel flow. Microfluid Nanofluid 3:417–425CrossRef
Metadaten
Titel
A design method for nanofluidic circuits
verfasst von
Yongbin Zhang
Publikationsdatum
06.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4029-5

Weitere Artikel der Ausgabe 1/2019

Microsystem Technologies 1/2019 Zur Ausgabe

Neuer Inhalt