Skip to main content
Erschienen in: Meccanica 11-12/2018

04.07.2018

A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields

verfasst von: A. I. Oliva-Avilés, A. Alonzo-García, V. V. Zozulya, F. Gamboa, J. Cob, F. Avilés

Erschienen in: Meccanica | Ausgabe 11-12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chaining process of a system of interacting carbon nanotubes (CNTs) under an alternating current electric field is investigated at two regions of different electric field characteristics. For the region of uniform electric field (far from the electrodes), a two-dimensional multiparticle approach based on the dielectrophoretic (DEP) theory and classical mechanics is proposed to investigate the CNT rotational and translation motion. For this scenario, CNT rotation and alignment along the electric field direction occurs first, followed by the translation and chaining processes which were found to be highly dependent on the CNT-to-CNT initial configuration. On the other hand, the presence of high electric field gradients governs the CNT chaining at regions near the electrodes. DEP forces caused by such gradients were computed by finite element analysis and compared to the magnitude of the CNT-to-CNT interacting forces at zones of uniform electric fields. A critical distance of CNT-to-CNT separation was estimated, which determines if a CNT is attracted towards the electrode or if it is attracted by other CNTs away from the electrodes. Experimental evidence of CNTs dynamic motion under electric fields is presented to support the predicted trends.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aviles F, May-Pat A, Canche-Escamilla G, Rodriguez-Uicab O, Ku-Herrera JJ, Duarte-Aranda S et al (2014) Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. J Intell Mater Syst Struct 27:92–103CrossRef Aviles F, May-Pat A, Canche-Escamilla G, Rodriguez-Uicab O, Ku-Herrera JJ, Duarte-Aranda S et al (2014) Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. J Intell Mater Syst Struct 27:92–103CrossRef
2.
Zurück zum Zitat Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23:465710CrossRef Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23:465710CrossRef
3.
Zurück zum Zitat Alamusi HuN, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723CrossRef Alamusi HuN, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723CrossRef
4.
Zurück zum Zitat Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43:263–270CrossRefMATH Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43:263–270CrossRefMATH
5.
Zurück zum Zitat Gkikas G, Paipetis AS (2015) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica 50:461–478CrossRef Gkikas G, Paipetis AS (2015) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica 50:461–478CrossRef
6.
Zurück zum Zitat Čanađija M, Brčić M, Brnić J (2017) Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding. Meccanica 52:1655–1668CrossRef Čanađija M, Brčić M, Brnić J (2017) Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding. Meccanica 52:1655–1668CrossRef
7.
Zurück zum Zitat Ferreira ADBL, Nóvoa PR, Marques AT (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35CrossRef Ferreira ADBL, Nóvoa PR, Marques AT (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35CrossRef
8.
Zurück zum Zitat Siddiqui NA, Sham ML, Tang BZ, Munir A, Kim JK (2009) Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating. Compos Part A Appl S 40:1606–1614CrossRef Siddiqui NA, Sham ML, Tang BZ, Munir A, Kim JK (2009) Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating. Compos Part A Appl S 40:1606–1614CrossRef
9.
Zurück zum Zitat Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904CrossRef Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904CrossRef
10.
Zurück zum Zitat Shi K, Zhitomirsky I (2013) Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481ADSCrossRef Shi K, Zhitomirsky I (2013) Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481ADSCrossRef
11.
Zurück zum Zitat Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
12.
Zurück zum Zitat Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416CrossRef Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416CrossRef
13.
Zurück zum Zitat Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A (2014) Flexible carbon nanotube films for high performance strain sensors. Sensors 14:10042–10071CrossRef Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A (2014) Flexible carbon nanotube films for high performance strain sensors. Sensors 14:10042–10071CrossRef
14.
Zurück zum Zitat Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981CrossRef Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981CrossRef
15.
Zurück zum Zitat Brown DA, Kim JH, Lee HB, Fotouhi G, Lee KH, Liu WK, Chung JH (2012) Electric field guided assembly of one-dimensional nanostructures for high performance sensors. Sensors 12:5725–5751CrossRef Brown DA, Kim JH, Lee HB, Fotouhi G, Lee KH, Liu WK, Chung JH (2012) Electric field guided assembly of one-dimensional nanostructures for high performance sensors. Sensors 12:5725–5751CrossRef
16.
Zurück zum Zitat Yamamoto K, Akita S, Nakayama Y (1996) Orientation of carbon nanotubes using electrophoresis. Jpn J Appl Phys 35:L917–L918CrossRef Yamamoto K, Akita S, Nakayama Y (1996) Orientation of carbon nanotubes using electrophoresis. Jpn J Appl Phys 35:L917–L918CrossRef
17.
Zurück zum Zitat Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36ADSCrossRef Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36ADSCrossRef
18.
Zurück zum Zitat Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64:2309–2316CrossRef Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64:2309–2316CrossRef
19.
Zurück zum Zitat Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon 50:2453–2464CrossRef Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon 50:2453–2464CrossRef
20.
Zurück zum Zitat Zhu YF, Ma C, Zhang W, Zhang RP, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054319ADSCrossRef Zhu YF, Ma C, Zhang W, Zhang RP, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054319ADSCrossRef
21.
Zurück zum Zitat Lu Y, Chen C, Liu Y, Zhang Y (2009) Theoretical simulation on the assembly of carbon nanotubes between electrodes by AC dielectrophoresis. Nanoscale Res Lett 4:157–164ADSCrossRef Lu Y, Chen C, Liu Y, Zhang Y (2009) Theoretical simulation on the assembly of carbon nanotubes between electrodes by AC dielectrophoresis. Nanoscale Res Lett 4:157–164ADSCrossRef
22.
Zurück zum Zitat Chen Z, Yang Y, Chen F, Qing Q, Wu Z, Liu Z (2005) Controllable interconnection of single-walled carbon nanotubes under AC electric field. J Phys Chem B 109:11420–11423CrossRef Chen Z, Yang Y, Chen F, Qing Q, Wu Z, Liu Z (2005) Controllable interconnection of single-walled carbon nanotubes under AC electric field. J Phys Chem B 109:11420–11423CrossRef
23.
Zurück zum Zitat Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354CrossRef Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354CrossRef
24.
Zurück zum Zitat Wei Y, Wei W, Liu L, Fan S (2008) Mounting multi-walled carbon nanotubes on probes by dielectrophoresis. Diam Relat Mater 17:1877–1880ADSCrossRef Wei Y, Wei W, Liu L, Fan S (2008) Mounting multi-walled carbon nanotubes on probes by dielectrophoresis. Diam Relat Mater 17:1877–1880ADSCrossRef
25.
Zurück zum Zitat Murugesh AK, Uthayanan A, Lekakou C (2010) Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl Phys A 100:135–144ADSCrossRef Murugesh AK, Uthayanan A, Lekakou C (2010) Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl Phys A 100:135–144ADSCrossRef
26.
Zurück zum Zitat Baik S, Usrey M, Rotkina L, Strano M (2004) Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility. J Phys Chem B 108:15560–15564CrossRef Baik S, Usrey M, Rotkina L, Strano M (2004) Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility. J Phys Chem B 108:15560–15564CrossRef
27.
Zurück zum Zitat Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP, Kinloch AJ, Wang CH (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618CrossRef Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP, Kinloch AJ, Wang CH (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618CrossRef
28.
Zurück zum Zitat Ma SJ, Guo WL (2008) Mechanism of carbon nanotubes aligning along applied electric field. Chin Phys Lett 25:270–273ADSCrossRef Ma SJ, Guo WL (2008) Mechanism of carbon nanotubes aligning along applied electric field. Chin Phys Lett 25:270–273ADSCrossRef
29.
Zurück zum Zitat Mostafa M, Banerjee S (2014) Predictive model for alignment and deposition of functionalized nanotubes using applied electric field. J Appl Phys 115:244309ADSCrossRef Mostafa M, Banerjee S (2014) Predictive model for alignment and deposition of functionalized nanotubes using applied electric field. J Appl Phys 115:244309ADSCrossRef
30.
Zurück zum Zitat Farajian AA, Pupysheva OV, Schmidt HK, Yakobson BI (2008) Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: an exact numerical approach. Phys Rev B 77:205432ADSCrossRef Farajian AA, Pupysheva OV, Schmidt HK, Yakobson BI (2008) Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: an exact numerical approach. Phys Rev B 77:205432ADSCrossRef
31.
Zurück zum Zitat Oliva-Avilés AI, Zozulya VV, Gamboa F, Avilés F (2016) Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework. Physica E 83:7–21ADSCrossRef Oliva-Avilés AI, Zozulya VV, Gamboa F, Avilés F (2016) Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework. Physica E 83:7–21ADSCrossRef
32.
Zurück zum Zitat Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge
33.
Zurück zum Zitat Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press LTD, Baldock Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press LTD, Baldock
34.
Zurück zum Zitat Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRef Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRef
35.
Zurück zum Zitat Abadi PPSS, Maschmann MR, Mortuza SM, Banerjee S, Baur JW, Graham S, Cola BA (2014) Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents. Carbon 69:178–187CrossRef Abadi PPSS, Maschmann MR, Mortuza SM, Banerjee S, Baur JW, Graham S, Cola BA (2014) Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents. Carbon 69:178–187CrossRef
36.
Zurück zum Zitat Rajter RF, French RH, Ching WY, Carter WC, Chiang YM (2007) Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. J Appl Phys 101:054303ADSCrossRef Rajter RF, French RH, Ching WY, Carter WC, Chiang YM (2007) Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. J Appl Phys 101:054303ADSCrossRef
37.
Zurück zum Zitat An L, Friedrich CR (2009) Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes. J Appl Phys 105:074314ADSCrossRef An L, Friedrich CR (2009) Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes. J Appl Phys 105:074314ADSCrossRef
38.
Zurück zum Zitat Kim JE, Han CS (2005) Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology 16:2245ADSCrossRef Kim JE, Han CS (2005) Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology 16:2245ADSCrossRef
39.
Zurück zum Zitat Volkov AN, Zhigilei LV (2010) Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J Phys Chem C 114:5513–5531CrossRef Volkov AN, Zhigilei LV (2010) Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J Phys Chem C 114:5513–5531CrossRef
40.
Zurück zum Zitat Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110ADSCrossRef Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110ADSCrossRef
41.
Zurück zum Zitat Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524CrossRef Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524CrossRef
42.
Zurück zum Zitat Kumar MS, Kim TH, Lee SH, Song SM, Yang JW, Nahm KS, Suh EK (2004) Influence of electric field type on the assembly of single walled carbon nanotubes. Chem Phys Lett 383:235–239ADSCrossRef Kumar MS, Kim TH, Lee SH, Song SM, Yang JW, Nahm KS, Suh EK (2004) Influence of electric field type on the assembly of single walled carbon nanotubes. Chem Phys Lett 383:235–239ADSCrossRef
43.
Zurück zum Zitat Sengezer EC, Seidel GD, Bodnar RJ (2015) Phenomenological characterization of fabrication of aligned pristine-SWNT and COOH-SWNT nanocomposites via dielectrophoresis under AC electric field. Polym Compos 36:1266–1279CrossRef Sengezer EC, Seidel GD, Bodnar RJ (2015) Phenomenological characterization of fabrication of aligned pristine-SWNT and COOH-SWNT nanocomposites via dielectrophoresis under AC electric field. Polym Compos 36:1266–1279CrossRef
44.
Zurück zum Zitat Li J, Zhang Q, Peng N, Zhu Q (2005) Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett 86:153116ADSCrossRef Li J, Zhang Q, Peng N, Zhu Q (2005) Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett 86:153116ADSCrossRef
45.
Zurück zum Zitat Knite M, Linarts A, Ozols K, Tupureina V, Stalte I, Lapcinskis L (2017) A study of electric field-induced conductive aligned network formation in high structure carbon black/silicone oil fluids. Colloids Surf A 526:8–13CrossRef Knite M, Linarts A, Ozols K, Tupureina V, Stalte I, Lapcinskis L (2017) A study of electric field-induced conductive aligned network formation in high structure carbon black/silicone oil fluids. Colloids Surf A 526:8–13CrossRef
46.
Zurück zum Zitat Papadakis SJ, Hoffmann JA, Deglau D, Chen A, Tyagi P, Gracias DH (2011) Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale 3:1059–1065ADSCrossRef Papadakis SJ, Hoffmann JA, Deglau D, Chen A, Tyagi P, Gracias DH (2011) Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale 3:1059–1065ADSCrossRef
47.
Zurück zum Zitat Yang X, Zhu Y, Ji L, Zhang C, Liang J (2007) Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene. J Dispers Sci Technol 28:1164–1168CrossRef Yang X, Zhu Y, Ji L, Zhang C, Liang J (2007) Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene. J Dispers Sci Technol 28:1164–1168CrossRef
48.
Zurück zum Zitat Sam M, Moghimian N, Bhiladvala RB (2016) Field-directed chaining of nanowires: towards transparent electrodes. Mater Lett 163:205–208CrossRef Sam M, Moghimian N, Bhiladvala RB (2016) Field-directed chaining of nanowires: towards transparent electrodes. Mater Lett 163:205–208CrossRef
49.
Zurück zum Zitat An L, Friedrich CR (2008) Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl Phys Lett 92:173103ADSCrossRef An L, Friedrich CR (2008) Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl Phys Lett 92:173103ADSCrossRef
50.
Zurück zum Zitat Liu X, Spencer JL, Kaiser AB, Arnold WM (2004) Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 4:125–128CrossRef Liu X, Spencer JL, Kaiser AB, Arnold WM (2004) Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 4:125–128CrossRef
51.
Zurück zum Zitat Suehiro J, Zhou G, Imakiire H, Ding W, Hara M (2005) Electric-field oriented carbon nanotubes in different dielectric solvents. Sens Actuators B 108:398–403CrossRef Suehiro J, Zhou G, Imakiire H, Ding W, Hara M (2005) Electric-field oriented carbon nanotubes in different dielectric solvents. Sens Actuators B 108:398–403CrossRef
52.
Zurück zum Zitat Perrin F (1934) Mouvement brownien d’un ellipsoide—I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5:497–511CrossRefMATH Perrin F (1934) Mouvement brownien d’un ellipsoide—I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5:497–511CrossRefMATH
53.
Zurück zum Zitat Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7:1–11CrossRefMATH Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7:1–11CrossRefMATH
Metadaten
Titel
A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields
verfasst von
A. I. Oliva-Avilés
A. Alonzo-García
V. V. Zozulya
F. Gamboa
J. Cob
F. Avilés
Publikationsdatum
04.07.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 11-12/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0869-4

Weitere Artikel der Ausgabe 11-12/2018

Meccanica 11-12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.