Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.10.2020 | Regular Paper | Ausgabe 2/2021

Knowledge and Information Systems 2/2021

A differentially private algorithm for range queries on trajectories

Zeitschrift:
Knowledge and Information Systems > Ausgabe 2/2021
Autoren:
Soheila Ghane, Lars Kulik, Kotagiri Ramamoharao
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We propose a novel algorithm to ensure \(\epsilon \)-differential privacy for answering range queries on trajectory data. In order to guarantee privacy, differential privacy mechanisms add noise to either data or query, thus introducing errors to queries made and potentially decreasing the utility of information. In contrast to the state of the art, our method achieves significantly lower error as it is the first data- and query-aware approach for such queries. The key challenge for answering range queries on trajectory data privately is to ensure an accurate count. Simply representing a trajectory as a set instead of sequence of points will generally lead to highly inaccurate query answers as it ignores the sequential dependency of location points in trajectories, i.e., will violate the consistency of trajectory data. Furthermore, trajectories are generally unevenly distributed across a city and adding noise uniformly will generally lead to a poor utility. To achieve differential privacy, our algorithm adaptively adds noise to the input data according to the given query set. It first privately partitions the data space into uniform regions and computes the traffic density of each region. The regions and their densities, in addition to the given query set, are then used to estimate the distribution of trajectories over the queried space, which ensures high accuracy for the given query set. We show the accuracy and efficiency of our algorithm using extensive empirical evaluations on real and synthetic data sets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

Knowledge and Information Systems 2/2021 Zur Ausgabe

Premium Partner