Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Calcolo 4/2020

01.12.2020

A discontinuous Galerkin recovery scheme with stabilization for diffusion problems

verfasst von: Mauricio Osorio, Wilmar Imbachí

Erschienen in: Calcolo | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this work, ideas previously introduced for a discontinuous Galerkin recovery method in one dimension, that involves a penalty stabilization term, are extended to an elliptic differential equation in several dimensions and different types of boundary conditions and meshes. Using standard arguments for other existing discontinuous Galerkin methods, we show results of existence and uniqueness of the solution. Also, optimal convergence rates are proved theoretically and confirmed numerically. Likewise, the numerical experiments allow us to analyze of the effect of the stabilization parameter.
Literatur
1.
Zurück zum Zitat Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. Wiley, New York (2011) MATH Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. Wiley, New York (2011) MATH
2.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002) MathSciNetCrossRef Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002) MathSciNetCrossRef
4.
Zurück zum Zitat Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12(10), 1597–1615 (1978) CrossRef Babuška, I., Rheinboldt, W.C.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12(10), 1597–1615 (1978) CrossRef
5.
Zurück zum Zitat Babuska, I., Strouboulis, T., Babuška, I., Whiteman, J.R., et al.: The Finite Element Method and Its Reliability. Oxford University Press, Oxford (2001) MATH Babuska, I., Strouboulis, T., Babuška, I., Whiteman, J.R., et al.: The Finite Element Method and Its Reliability. Oxford University Press, Oxford (2001) MATH
6.
Zurück zum Zitat Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the ${ L}_2$ projection in ${H}^1$. Math. Comput. 71(237), 147–156 (2002) CrossRef Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the ${ L}_2$ projection in ${H}^1$. Math. Comput. 71(237), 147–156 (2002) CrossRef
7.
Zurück zum Zitat Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007) Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)
8.
Zurück zum Zitat Brezzi, F., Hughes, T.J., Marini, L.D., Masud, A.: Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22(1–3), 119–145 (2005) MathSciNetCrossRef Brezzi, F., Hughes, T.J., Marini, L.D., Masud, A.: Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22(1–3), 119–145 (2005) MathSciNetCrossRef
9.
Zurück zum Zitat Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer, Berlin (2011) MATH Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer, Berlin (2011) MATH
10.
Zurück zum Zitat Ferrero, A., Larocca, F., Puppo, G.: A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection–diffusion equations. Int. J. Numer. Methods Fluids 77(2), 63–91 (2015) MathSciNetCrossRef Ferrero, A., Larocca, F., Puppo, G.: A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection–diffusion equations. Int. J. Numer. Methods Fluids 77(2), 63–91 (2015) MathSciNetCrossRef
11.
Zurück zum Zitat French, D.A., Galbraith, M.C., Osorio, M.: Error analysis of a modified discontinuous Galerkin recovery scheme for diffusion problems. Appl. Math. Comput. 218(13), 7144–7154 (2012) MathSciNetMATH French, D.A., Galbraith, M.C., Osorio, M.: Error analysis of a modified discontinuous Galerkin recovery scheme for diffusion problems. Appl. Math. Comput. 218(13), 7144–7154 (2012) MathSciNetMATH
12.
Zurück zum Zitat Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 2. Pitman Advanced Pub. Program, Boston (1985) MATH Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 2. Pitman Advanced Pub. Program, Boston (1985) MATH
13.
14.
Zurück zum Zitat Lo, M., Van Leer, B.: Analysis and implementation of recovery-based discontinuous Galerkin for diffusion. In: 19th AIAA Computational Fluid Dynamics, p. 3786 (2009) Lo, M., Van Leer, B.: Analysis and implementation of recovery-based discontinuous Galerkin for diffusion. In: 19th AIAA Computational Fluid Dynamics, p. 3786 (2009)
15.
Zurück zum Zitat Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008) CrossRef Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008) CrossRef
16.
Zurück zum Zitat Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979) CrossRef Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979) CrossRef
17.
Zurück zum Zitat van Leer, B., Lo, M., van Raalte, M.: A discontinuous Galerkin method for diffusion based on recovery. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4083 (2007) van Leer, B., Lo, M., van Raalte, M.: A discontinuous Galerkin method for diffusion based on recovery. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4083 (2007)
18.
Zurück zum Zitat Van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: 17th AIAA Computational Fluid Dynamics Conference, p. 5108 (2005) Van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: 17th AIAA Computational Fluid Dynamics Conference, p. 5108 (2005)
19.
Zurück zum Zitat Veeser, A., Verfürth, R.: Poincaré constants for finite element stars. IMA J. Numer. Anal. 32(1), 30–47 (2012) MathSciNetCrossRef Veeser, A., Verfürth, R.: Poincaré constants for finite element stars. IMA J. Numer. Anal. 32(1), 30–47 (2012) MathSciNetCrossRef
20.
Zurück zum Zitat Vemaganti, K.: Discontinuous Galerkin methods for periodic boundary value problems. Numer. Methods Partial Differ. Equ. 23(3), 587–596 (2007) MathSciNetCrossRef Vemaganti, K.: Discontinuous Galerkin methods for periodic boundary value problems. Numer. Methods Partial Differ. Equ. 23(3), 587–596 (2007) MathSciNetCrossRef
21.
Zurück zum Zitat Wang, R., Zhang, R., Wang, X., Jia, J.: Polynomial preserving recovery for a class of weak Galerkin finite element methods. J. Comput. Appl. Math. 362, 528–539 (2019) MathSciNetCrossRef Wang, R., Zhang, R., Wang, X., Jia, J.: Polynomial preserving recovery for a class of weak Galerkin finite element methods. J. Comput. Appl. Math. 362, 528–539 (2019) MathSciNetCrossRef
22.
Zurück zum Zitat Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003) MathSciNetCrossRef Warburton, T., Hesthaven, J.S.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003) MathSciNetCrossRef
Metadaten
Titel
A discontinuous Galerkin recovery scheme with stabilization for diffusion problems
verfasst von
Mauricio Osorio
Wilmar Imbachí
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 4/2020
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00384-4

Weitere Artikel der Ausgabe 4/2020

Calcolo 4/2020 Zur Ausgabe

Premium Partner