Skip to main content
Erschienen in: Wireless Personal Communications 1/2018

24.11.2017

A Distance Based Reliable Cooperative Spectrum Sensing Algorithm in Cognitive Radio

verfasst von: Gaurav Verma, O. P. Sahu

Erschienen in: Wireless Personal Communications | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spectrum sensing is the most critical task in cognitive radio (CR) which needs to be performed very precisely in order to efficiently utilize the underutilized spectrum and to provide sufficient protection to the primary users (PUs). To improve the sensing performance under fading, shadowing and hidden terminal problems more than one CR users collaboratively perform the spectrum sensing called as cooperative spectrum sensing (CSS). In conventional CSS the decision of each CR is fused at fusion center with equal weights. But due to variable distance of each CR from the PU all decisions are not equally reliable and therefore should be assigned different weights according to their reliability. In this paper we propose a new weighting scheme for CSS under Rayleigh faded channel. In proposed weighting scheme, based on the distance of each CR from the PU reliability of CR nodes is determined and correspondingly appropriate weights are assigned to different users. The CSS algorithm using new weighting scheme gives better performance than conventional CSS algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making soft-ware radio more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making soft-ware radio more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
2.
Zurück zum Zitat Kumar, S., & Sahay, J. (2011). Cognitive radio concept and challenges in dynamic spectrum access for the future generation wireless communications systems. Wireless Personal Communications, 59, 525–535.CrossRef Kumar, S., & Sahay, J. (2011). Cognitive radio concept and challenges in dynamic spectrum access for the future generation wireless communications systems. Wireless Personal Communications, 59, 525–535.CrossRef
3.
Zurück zum Zitat Cabric, D., Mishra S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings 38th. Asilomar conference on signals, systems and computers (pp. 772–776). Cabric, D., Mishra S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Proceedings 38th. Asilomar conference on signals, systems and computers (pp. 772–776).
4.
Zurück zum Zitat Federal Communications Commission, Spectrum policy task force. In Report, FCC 02-155, Nov. 2002. Federal Communications Commission, Spectrum policy task force. In Report, FCC 02-155, Nov. 2002.
5.
Zurück zum Zitat Stotas, S., & Nallanathan, A. (2011). Enhancing the capacity of spectrum sharing cognitive radio networks. IEEE Transactions on Vehicular Technolgy, 60(8), 3768–3779.CrossRef Stotas, S., & Nallanathan, A. (2011). Enhancing the capacity of spectrum sharing cognitive radio networks. IEEE Transactions on Vehicular Technolgy, 60(8), 3768–3779.CrossRef
6.
Zurück zum Zitat Zhang, X., & et al. (2014). Matched filter based spectrum sensing and power level detection for cognitive radio network. In IEEE conference on signal processing for cognitive radios and networks. Zhang, X., & et al. (2014). Matched filter based spectrum sensing and power level detection for cognitive radio network. In IEEE conference on signal processing for cognitive radios and networks.
7.
Zurück zum Zitat Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef
8.
Zurück zum Zitat Ghozzi, M., & et al. (2006). Cyclostationarity-based test for detection of vacant frequency bands. In International conference on cognitive radio oriented wireless networks and communication. Ghozzi, M., & et al. (2006). Cyclostationarity-based test for detection of vacant frequency bands. In International conference on cognitive radio oriented wireless networks and communication.
9.
Zurück zum Zitat Liu, H., & Chen, W. (2012). Double threshold cooperative spectrum sensing algorithm based on energy and eigen value of signal. Journal of Computational Information Systems, 8, 9449–9456. Liu, H., & Chen, W. (2012). Double threshold cooperative spectrum sensing algorithm based on energy and eigen value of signal. Journal of Computational Information Systems, 8, 9449–9456.
10.
Zurück zum Zitat Lataief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.CrossRef Lataief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.CrossRef
11.
Zurück zum Zitat Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication (Elsevier) Journal, 4(1), 40–62.CrossRef Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication (Elsevier) Journal, 4(1), 40–62.CrossRef
12.
Zurück zum Zitat Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.CrossRef Ma, J., Zhao, G., & Li, Y. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.CrossRef
13.
Zurück zum Zitat Raza, U., et al. (2013). A comaparative study of spectrum awareness techniques for cognitive radio oriented wireless network. Physical Communication (Elsevier) Journal, 9, 148–170. Raza, U., et al. (2013). A comaparative study of spectrum awareness techniques for cognitive radio oriented wireless network. Physical Communication (Elsevier) Journal, 9, 148–170.
14.
Zurück zum Zitat Vistotsky, E., Kuffner, S., & Peterson, R. (2005). On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In IEEE international symposium on new frontiers in dynamic spectrum access networks, (pp. 338–345) Baltimore, MD. Vistotsky, E., Kuffner, S., & Peterson, R. (2005). On collaborative detection of TV transmissions in support of dynamic spectrum sharing. In IEEE international symposium on new frontiers in dynamic spectrum access networks, (pp. 338–345) Baltimore, MD.
15.
Zurück zum Zitat Zhang, W., et al. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef Zhang, W., et al. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef
16.
Zurück zum Zitat Ma, J., et al. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.CrossRef Ma, J., et al. (2008). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(11), 4502–4507.CrossRef
17.
Zurück zum Zitat Peh, E. C. Y., et al. (2010). Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Transactions on Wireless Communications, 9(12), 3838–3847.CrossRef Peh, E. C. Y., et al. (2010). Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Transactions on Wireless Communications, 9(12), 3838–3847.CrossRef
18.
Zurück zum Zitat Xiao, L., Liu, K., & Ma, L. (2010). A weighted cooperative spectrum sensing in cognitive radio networks. In IEEE international conference on information networking and automation (ICINA), Vol. 2. Xiao, L., Liu, K., & Ma, L. (2010). A weighted cooperative spectrum sensing in cognitive radio networks. In IEEE international conference on information networking and automation (ICINA), Vol. 2.
19.
Zurück zum Zitat Fu, J,. & et al. (2012). Improved weighted cooperative sensing algorithm based on distributed optimization in cognitive radio networks. In Proceedings of 31st Chinese control conference, July 25–27, Hefei, China. Fu, J,. & et al. (2012). Improved weighted cooperative sensing algorithm based on distributed optimization in cognitive radio networks. In Proceedings of 31st Chinese control conference, July 25–27, Hefei, China.
20.
Zurück zum Zitat Verma, G., & Sahu, O. P. (2016). Intelligent selection of threshold in cognitive radio system. Springer Journal on Telecommunication Systems, pp. 1–10. Verma, G., & Sahu, O. P. (2016). Intelligent selection of threshold in cognitive radio system. Springer Journal on Telecommunication Systems, pp. 1–10.
21.
Zurück zum Zitat Wang, N., et al. (2013). Adaptive spectrum sensing algorithm under different primary user utilizations. IEEE Communications Letters, 17(9), 1838–1841.CrossRef Wang, N., et al. (2013). Adaptive spectrum sensing algorithm under different primary user utilizations. IEEE Communications Letters, 17(9), 1838–1841.CrossRef
22.
Zurück zum Zitat Lin, Y.-E., et al. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.CrossRef Lin, Y.-E., et al. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.CrossRef
23.
Zurück zum Zitat Kan. C., & et al. (2013). Optimization of cooperative sensing in interference-aware cognitive radio networks over imperfect reporting channel. In IEEE international conference on wireless communication and signal processing (WCSP), (pp. 1–6). Kan. C., & et al. (2013). Optimization of cooperative sensing in interference-aware cognitive radio networks over imperfect reporting channel. In IEEE international conference on wireless communication and signal processing (WCSP), (pp. 1–6).
24.
Zurück zum Zitat Kan. C., and et al. (2012). Sensing-throughput tradeoff for interference-aware cognitive radio networks. In IEEE international conference on computer science and network technology (ICCSNT), (pp. 660–665). Kan. C., and et al. (2012). Sensing-throughput tradeoff for interference-aware cognitive radio networks. In IEEE international conference on computer science and network technology (ICCSNT), (pp. 660–665).
25.
Zurück zum Zitat Nasreddine, J., & et al. (2010). Location-based adaptive detection threshold for dynamic spectrum access. In IEEE symposium on new frontiers in dynamic spectrum (pp. 1–10). Nasreddine, J., & et al. (2010). Location-based adaptive detection threshold for dynamic spectrum access. In IEEE symposium on new frontiers in dynamic spectrum (pp. 1–10).
26.
Zurück zum Zitat Ye, Z., & et al. (2008). Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks. In IEEE conference, wireless communications and networking conference (WCNC) (pp. 711–716). Ye, Z., & et al. (2008). Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks. In IEEE conference, wireless communications and networking conference (WCNC) (pp. 711–716).
27.
Zurück zum Zitat Xiao, L., et al. (2007). Sensor-Assisted Localization in Cellular Systems. IEEE Transactions on Wireless Communications, 6(12), 4244–4248.CrossRef Xiao, L., et al. (2007). Sensor-Assisted Localization in Cellular Systems. IEEE Transactions on Wireless Communications, 6(12), 4244–4248.CrossRef
28.
Zurück zum Zitat Werner, J., & et al. (2013). Estimating the primary user location and transmit power in cognitive radio systems using extended kalman filters. In IEEE international conference on wireless on-demand network systems and services (WONS) (pp. 68–73). Werner, J., & et al. (2013). Estimating the primary user location and transmit power in cognitive radio systems using extended kalman filters. In IEEE international conference on wireless on-demand network systems and services (WONS) (pp. 68–73).
29.
Zurück zum Zitat Radhi, N., & et al. (2011). Estimate primary user localization using cognitive radio networks. In IEEE international conference on innovations in information technology (IIT) (pp. 381–385). Radhi, N., & et al. (2011). Estimate primary user localization using cognitive radio networks. In IEEE international conference on innovations in information technology (IIT) (pp. 381–385).
30.
Zurück zum Zitat Wang, J., and et al. (2010). Weighted centroid algorithm for estimating primary user location: Theoretical analysis and distributed implementation, arXiv:1011.2313 (pp. 1–25). Wang, J., and et al. (2010). Weighted centroid algorithm for estimating primary user location: Theoretical analysis and distributed implementation, arXiv:​1011.​2313 (pp. 1–25).
31.
Zurück zum Zitat Wild, B., and et al. (2005). Detecting primary receivers for cognitive radio applications. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 124–130). Wild, B., and et al. (2005). Detecting primary receivers for cognitive radio applications. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 124–130).
32.
Zurück zum Zitat Gupta, M., Verma, G. and Dubey, R. K. (2016). Cooperative spectrum sensing for cognitive radio based on adaptive threshold. In proceedings of second IEEE international conference on computational intelligence and communication technology (CICT-2016). Gupta, M., Verma, G. and Dubey, R. K. (2016). Cooperative spectrum sensing for cognitive radio based on adaptive threshold. In proceedings of second IEEE international conference on computational intelligence and communication technology (CICT-2016).
33.
Zurück zum Zitat Verma, G., & Sahu, O. P. (2015). Interference aware optimization of throughput in cognitive radio system. Defence Science Journal, 65, 1–6. Verma, G., & Sahu, O. P. (2015). Interference aware optimization of throughput in cognitive radio system. Defence Science Journal, 65, 1–6.
34.
Zurück zum Zitat Verma, G., and Sahu, O.P. (2015). Throughput enhancement to the cognitive radio networks under the precaution is better than the cure approach (PBC). In Proceedings, IEEE international conference, signal processing and communication engineering systems (SPACES), K.L. University (pp. 1–4). Verma, G., and Sahu, O.P. (2015). Throughput enhancement to the cognitive radio networks under the precaution is better than the cure approach (PBC). In Proceedings, IEEE international conference, signal processing and communication engineering systems (SPACES), K.L. University (pp. 1–4).
35.
Zurück zum Zitat Verma, G., and Sahu, O.P. (2015). Throughput enhancement to the cognitive radio networks under the precaution based cooperation of the primary users. In Proceedings, IEEE international conference, signal processing, informatics, communication and energy systems (SPICES), NIT Calicut, Kerala (pp. 1–4). Verma, G., and Sahu, O.P. (2015). Throughput enhancement to the cognitive radio networks under the precaution based cooperation of the primary users. In Proceedings, IEEE international conference, signal processing, informatics, communication and energy systems (SPICES), NIT Calicut, Kerala (pp. 1–4).
36.
Zurück zum Zitat Verma, G., and Sahu, O. P. Overcoming the barrier of sensing-throughput tradeoff in cognitive radio networks. In processing, wireless networks, Springer. Verma, G., and Sahu, O. P. Overcoming the barrier of sensing-throughput tradeoff in cognitive radio networks. In processing, wireless networks, Springer.
37.
Zurück zum Zitat Choi, Y. J., et al. (2012). Throughput analysis of cooperative spectrum sensing in Rayleigh-faded cognitive radio systems. IET Communication, 6(9), 1104–1110.MathSciNetCrossRef Choi, Y. J., et al. (2012). Throughput analysis of cooperative spectrum sensing in Rayleigh-faded cognitive radio systems. IET Communication, 6(9), 1104–1110.MathSciNetCrossRef
Metadaten
Titel
A Distance Based Reliable Cooperative Spectrum Sensing Algorithm in Cognitive Radio
verfasst von
Gaurav Verma
O. P. Sahu
Publikationsdatum
24.11.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-5052-z

Weitere Artikel der Ausgabe 1/2018

Wireless Personal Communications 1/2018 Zur Ausgabe

Neuer Inhalt