Skip to main content
Erschienen in: Wireless Networks 6/2020

05.05.2020

A distributed reinforcement learning based sensor node scheduling algorithm for coverage and connectivity maintenance in wireless sensor network

verfasst von: Anamika Sharma, Siddhartha Chauhan

Erschienen in: Wireless Networks | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fundamental challenge for randomly deployed resource-constrained wireless sensor network is to enhance the network lifetime without compromising its performance metrics such as coverage rate and network connectivity. One way is to schedule the activities of sensor nodes and form scheduling rounds autonomously in such a way that each spatial point is covered by at least one sensor node and there must be at least one communication path from the sensor nodes to base station. This autonomous activity scheduling of the sensor nodes can be efficiently done with Reinforcement Learning (RL), a technique of machine learning because it does not require prior environment modeling. In this paper, a Nash Q-Learning based node scheduling algorithm for coverage and connectivity maintenance (CCM-RL) is proposed where each node autonomously learns its optimal action (active/hibernate/sleep/customize the sensing range) to maximize the coverage rate and maintain network connectivity. The learning algorithm resides inside each sensor node. The main objective of this algorithm is to enable the sensor nodes to learn their optimal action so that the total number of activated nodes in each scheduling round becomes minimum and preserves the criteria of coverage rate and network connectivity. The comparison of CCM-RL protocol with other protocols proves its accuracy and reliability. The simulative comparison shows that CCM-RL performs better in terms of an average number of active sensor nodes in one scheduling round, coverage rate, and energy consumption.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 28–39). Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., & Gill, C. (2003). Integrated coverage and connectivity configuration in wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems (pp. 28–39).
2.
Zurück zum Zitat Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc and Sensor Wireless Networks,1, 89–124. Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc and Sensor Wireless Networks,1, 89–124.
3.
Zurück zum Zitat Onur, E., Ersoy, C., Deliҫ, H., & Akarun, L. (2007). Surveillance wireless sensor networks: Deployment quality analysis. IEEE Network,21(6), 48–53. Onur, E., Ersoy, C., Deliҫ, H., & Akarun, L. (2007). Surveillance wireless sensor networks: Deployment quality analysis. IEEE Network,21(6), 48–53.
4.
Zurück zum Zitat Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensor Journal,14(3), 636–644. Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensor Journal,14(3), 636–644.
5.
Zurück zum Zitat Yu, J., Wan, S., Cheng, X., & Yu, D. (2017). Coverage contribution area based k-coverage for wireless sensor networks. IEEE Transactions on Vehicular Technology,66(9), 8510–8523. Yu, J., Wan, S., Cheng, X., & Yu, D. (2017). Coverage contribution area based k-coverage for wireless sensor networks. IEEE Transactions on Vehicular Technology,66(9), 8510–8523.
6.
Zurück zum Zitat Jiang, B., Ravindran, B., & Cho, H. (2012). Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Transactions on Mobile Computing,12(4), 735–747. Jiang, B., Ravindran, B., & Cho, H. (2012). Probability-based prediction and sleep scheduling for energy-efficient target tracking in sensor networks. IEEE Transactions on Mobile Computing,12(4), 735–747.
7.
Zurück zum Zitat Zorbas, D., Glynos, D., Kotzanikolaou, P., & Douligeris, C. (2010). Solving coverage problems in wireless sensor networks using cover sets. Ad Hoc Networks,8(4), 400–415. Zorbas, D., Glynos, D., Kotzanikolaou, P., & Douligeris, C. (2010). Solving coverage problems in wireless sensor networks using cover sets. Ad Hoc Networks,8(4), 400–415.
8.
Zurück zum Zitat Mohamadi, H., Ismail, A. S., & Salleh, S. (2014). Solving target coverage problem using cover sets in wireless sensor networks based on learning automata. Wireless Personal Communications,75(1), 447–463. Mohamadi, H., Ismail, A. S., & Salleh, S. (2014). Solving target coverage problem using cover sets in wireless sensor networks based on learning automata. Wireless Personal Communications,75(1), 447–463.
9.
Zurück zum Zitat Seah, M. W. M., Tham, C. K., Srinivasan, V., & Xin, A. (2007). Achieving coverage through distributed reinforcement learning in wireless sensor networks. In Proceedings of the 3rd international conference on intelligent sensors, sensor networks and information (pp. 425–430). Seah, M. W. M., Tham, C. K., Srinivasan, V., & Xin, A. (2007). Achieving coverage through distributed reinforcement learning in wireless sensor networks. In Proceedings of the 3rd international conference on intelligent sensors, sensor networks and information (pp. 425–430).
10.
Zurück zum Zitat Esnaashari, M., & Meybodi, M. R. (2010). A learning automata based scheduling solution to the dynamic point coverage problem in wireless sensor networks. Computer Networks,54(14), 2410–2438.MATH Esnaashari, M., & Meybodi, M. R. (2010). A learning automata based scheduling solution to the dynamic point coverage problem in wireless sensor networks. Computer Networks,54(14), 2410–2438.MATH
11.
Zurück zum Zitat Chen, H., Li, X., & Zhao, F. (2016). A reinforcement learning-based sleep scheduling algorithm for desired area coverage in solar-powered wireless sensor networks. IEEE Sensors Journal,16(8), 2763–2774. Chen, H., Li, X., & Zhao, F. (2016). A reinforcement learning-based sleep scheduling algorithm for desired area coverage in solar-powered wireless sensor networks. IEEE Sensors Journal,16(8), 2763–2774.
12.
Zurück zum Zitat Mostafaei, H., Montieri, A., Persico, V., & Pescapé, A. (2017). A sleep scheduling approach based on learning automata for WSN partial coverage. Journal of Network and Computer Applications,80, 67–78. Mostafaei, H., Montieri, A., Persico, V., & Pescapé, A. (2017). A sleep scheduling approach based on learning automata for WSN partial coverage. Journal of Network and Computer Applications,80, 67–78.
13.
Zurück zum Zitat Esnaashari, M., & Meybodi, M. R. (2010). Data aggregation in sensor networks using learning automata. Wireless Networks,16(3), 687–699.MATH Esnaashari, M., & Meybodi, M. R. (2010). Data aggregation in sensor networks using learning automata. Wireless Networks,16(3), 687–699.MATH
14.
Zurück zum Zitat Lu, Y., Zhang, T., He, E., & Comşa, I. S. (2018). Self-learning-based data aggregation scheduling policy in wireless sensor networks. Journal of Sensors,2018, 9647593. Lu, Y., Zhang, T., He, E., & Comşa, I. S. (2018). Self-learning-based data aggregation scheduling policy in wireless sensor networks. Journal of Sensors,2018, 9647593.
15.
Zurück zum Zitat Shahina, K., & Vaidehi, V. (2018). Clustering and data aggregation in wireless sensor networks using machine learning algorithms. In Proceedings of the 2018 international conference on recent trends in advance computing (pp. 109–115). Shahina, K., & Vaidehi, V. (2018). Clustering and data aggregation in wireless sensor networks using machine learning algorithms. In Proceedings of the 2018 international conference on recent trends in advance computing (pp. 109–115).
16.
Zurück zum Zitat Forster, A., & Murphy, A. L. (2009). CLIQUE: Role-free clustering with Q-learning for wireless sensor networks. In Proceedings of the 29th IEEE international conference on distributed computing systems (pp. 441–449). Forster, A., & Murphy, A. L. (2009). CLIQUE: Role-free clustering with Q-learning for wireless sensor networks. In Proceedings of the 29th IEEE international conference on distributed computing systems (pp. 441–449).
17.
Zurück zum Zitat Aoudia, F. A., Gautier, M., & Berder, O. (2018). RLMan: An energy manager based on reinforcement learning for energy harvesting wireless sensor networks. IEEE Transactions on Green Communications and Networking,2(2), 408–417. Aoudia, F. A., Gautier, M., & Berder, O. (2018). RLMan: An energy manager based on reinforcement learning for energy harvesting wireless sensor networks. IEEE Transactions on Green Communications and Networking,2(2), 408–417.
18.
Zurück zum Zitat Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications,38, 85–201. Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications,38, 85–201.
19.
Zurück zum Zitat Ye, D., & Zhang, M. (2017). A self-adaptive sleep/wake-up scheduling approach for wireless sensor networks. IEEE Transactions on Cybernetics,48(3), 979–992. Ye, D., & Zhang, M. (2017). A self-adaptive sleep/wake-up scheduling approach for wireless sensor networks. IEEE Transactions on Cybernetics,48(3), 979–992.
20.
Zurück zum Zitat Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019). Lightweight reinforcement learning for energy efficient communications in wireless sensor networks. IEEE Access,7, 29355–29364. Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019). Lightweight reinforcement learning for energy efficient communications in wireless sensor networks. IEEE Access,7, 29355–29364.
21.
Zurück zum Zitat Raj, A. B., Ramesh, M. V., Kulkarni, R. V., & Hemalatha, T. (2012). Security enhancement in wireless sensor networks using machine learning. In Proceedings of the IEEE 14th international conference on high performance computing and communication (pp. 1264–1269). Raj, A. B., Ramesh, M. V., Kulkarni, R. V., & Hemalatha, T. (2012). Security enhancement in wireless sensor networks using machine learning. In Proceedings of the IEEE 14th international conference on high performance computing and communication (pp. 1264–1269).
22.
Zurück zum Zitat Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2010). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials,13(1), 68–96. Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2010). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials,13(1), 68–96.
23.
Zurück zum Zitat Hu, J., & Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games. Journal of Machine Learning Research,4(Nov), 1039–1069.MathSciNetMATH Hu, J., & Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games. Journal of Machine Learning Research,4(Nov), 1039–1069.MathSciNetMATH
24.
Zurück zum Zitat Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent advances. INFORMS Journal on Computing,21(2), 178–192.MathSciNetMATH Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent advances. INFORMS Journal on Computing,21(2), 178–192.MathSciNetMATH
25.
Zurück zum Zitat Bu, L., Babu, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),38(2), 56–172. Bu, L., Babu, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),38(2), 56–172.
26.
Zurück zum Zitat Yau, K. L. A., Komisarczuk, P., & Teal, P. D. (2012). Reinforcement learning for context awareness and intelligence in wireless networks: Review, new features and open issues. Journal of Network and Computer Applications,35(1), 253–267. Yau, K. L. A., Komisarczuk, P., & Teal, P. D. (2012). Reinforcement learning for context awareness and intelligence in wireless networks: Review, new features and open issues. Journal of Network and Computer Applications,35(1), 253–267.
27.
Zurück zum Zitat Yau, K. L. A., Goh, H. G., Chieng, D., & Kwong, K. H. (2015). Application of reinforcement learning to wireless sensor networks: models and algorithms. Computing,97(11), 1045–1075.MathSciNetMATH Yau, K. L. A., Goh, H. G., Chieng, D., & Kwong, K. H. (2015). Application of reinforcement learning to wireless sensor networks: models and algorithms. Computing,97(11), 1045–1075.MathSciNetMATH
28.
Zurück zum Zitat Al-Karaki, J. N., & Gawanmeh, A. (2017). The optimal deployment, coverage, and connectivity problems in wireless sensor networks: Revisited. IEEE Access,5, 8051–18065. Al-Karaki, J. N., & Gawanmeh, A. (2017). The optimal deployment, coverage, and connectivity problems in wireless sensor networks: Revisited. IEEE Access,5, 8051–18065.
29.
Zurück zum Zitat Borasia, S., & Raisinghani, V. (2011). A review of congestion control mechanisms for wireless sensor networks. In Technology systems and management (pp. 201-206). Berlin: Springer. Borasia, S., & Raisinghani, V. (2011). A review of congestion control mechanisms for wireless sensor networks. In Technology systems and management (pp. 201-206). Berlin: Springer.
30.
Zurück zum Zitat Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNs): A comprehensive overview. European Transactions on Telecommunications,22(4), 151–167. Ishmanov, F., Malik, A. S., & Kim, S. W. (2011). Energy consumption balancing (ECB) issues and mechanisms in wireless sensor networks (WSNs): A comprehensive overview. European Transactions on Telecommunications,22(4), 151–167.
31.
Zurück zum Zitat Du, X., & Chen, H. H. (2008). Security in wireless sensor networks. IEEE Wireless Communications,15(4), 60–66. Du, X., & Chen, H. H. (2008). Security in wireless sensor networks. IEEE Wireless Communications,15(4), 60–66.
32.
Zurück zum Zitat Wang, B. (2011). Coverage problems in sensor networks: A survey. ACM Computing Surveys (CSUR),43(4), 1–53. Wang, B. (2011). Coverage problems in sensor networks: A survey. ACM Computing Surveys (CSUR),43(4), 1–53.
33.
Zurück zum Zitat Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials,19(2), 828–854. Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials,19(2), 828–854.
34.
Zurück zum Zitat More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University-Computer and Information Sciences,29(4), 428–448. More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University-Computer and Information Sciences,29(4), 428–448.
35.
Zurück zum Zitat Cardei, M., Wu, J., & Lu, M. (2006). Improving network lifetime using sensors with adjustable sensing ranges. International Journal of Sensor Networks,1(1–2), 41–49. Cardei, M., Wu, J., & Lu, M. (2006). Improving network lifetime using sensors with adjustable sensing ranges. International Journal of Sensor Networks,1(1–2), 41–49.
36.
Zurück zum Zitat Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion,49, 1–25. Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion,49, 1–25.
37.
Zurück zum Zitat Hefeeda, M., & Ahmadi, H. (2007). A probabilistic coverage protocol for wireless sensor networks. In Proceedings of IEEE international conference on network protocol (pp. 41–50). Hefeeda, M., & Ahmadi, H. (2007). A probabilistic coverage protocol for wireless sensor networks. In Proceedings of IEEE international conference on network protocol (pp. 41–50).
38.
Zurück zum Zitat Mohamadi, H., Salleh, S., Razali, M. N., & Marouf, S. (2015). A new learning automata-based approach for maximizing network lifetime in wireless sensor networks with adjustable sensing ranges. Neurocomputing,153, 11–19. Mohamadi, H., Salleh, S., Razali, M. N., & Marouf, S. (2015). A new learning automata-based approach for maximizing network lifetime in wireless sensor networks with adjustable sensing ranges. Neurocomputing,153, 11–19.
39.
Zurück zum Zitat Chenait, M., Zebbane, B., Benzaid, C., & Badache, N. (2015). Sleep scheduling with predictive coverage redundancy check in wireless sensor networks. In Proceedings of the international symposium on wireless communication systems (pp. 366–370). Chenait, M., Zebbane, B., Benzaid, C., & Badache, N. (2015). Sleep scheduling with predictive coverage redundancy check in wireless sensor networks. In Proceedings of the international symposium on wireless communication systems (pp. 366–370).
40.
Zurück zum Zitat Basheer, S., Mathew, R. M., Ranjith, D., Sathish Kumar, M., Sundar, P., & Balajee, J. M. (2019). An analysis on barrier coverage in wireless sensor networks. Journal of Computational and Theoretical Nanoscience,16(5–6), 2599–2603. Basheer, S., Mathew, R. M., Ranjith, D., Sathish Kumar, M., Sundar, P., & Balajee, J. M. (2019). An analysis on barrier coverage in wireless sensor networks. Journal of Computational and Theoretical Nanoscience,16(5–6), 2599–2603.
41.
Zurück zum Zitat Niculescu, D., & Nath, B. (2001). Ad hoc positioning system (APS). In Proceedings of the IEEE global telecommunications conference, vol. 5 (pp. 2926–2931). Niculescu, D., & Nath, B. (2001). Ad hoc positioning system (APS). In Proceedings of the IEEE global telecommunications conference, vol. 5 (pp. 2926–2931).
42.
Zurück zum Zitat Zhu, J., & Papavassiliou, S. (2003). On the energy-efficient organization and the lifetime of multi-hop sensor networks. IEEE Communications Letters,7(11), 537–539. Zhu, J., & Papavassiliou, S. (2003). On the energy-efficient organization and the lifetime of multi-hop sensor networks. IEEE Communications Letters,7(11), 537–539.
43.
Zurück zum Zitat Lauer, M., & Riedmiller, M. (2000). An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In Proceedings of the 17th international conference on machine learning. Lauer, M., & Riedmiller, M. (2000). An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In Proceedings of the 17th international conference on machine learning.
44.
Zurück zum Zitat Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. ICML,1, 322–328. Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. ICML,1, 322–328.
45.
Zurück zum Zitat Greenwald, A., Hall, K., & Serrano, R. (2003). Correlated Q-learning. In ICML, vol. 3 (pp. 242–249). Greenwald, A., Hall, K., & Serrano, R. (2003). Correlated Q-learning. In ICML, vol. 3 (pp. 242–249).
46.
Zurück zum Zitat Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine learning proceedings (pp. 157–163). Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine learning proceedings (pp. 157–163).
47.
Zurück zum Zitat Wang, X., & Sandholm, T. (2003). Reinforcement learning to play an optimal Nash equilibrium in team Markov games. In Advances in neural information processing systems (pp. 1603–1610). Wang, X., & Sandholm, T. (2003). Reinforcement learning to play an optimal Nash equilibrium in team Markov games. In Advances in neural information processing systems (pp. 1603–1610).
Metadaten
Titel
A distributed reinforcement learning based sensor node scheduling algorithm for coverage and connectivity maintenance in wireless sensor network
verfasst von
Anamika Sharma
Siddhartha Chauhan
Publikationsdatum
05.05.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02350-y

Weitere Artikel der Ausgabe 6/2020

Wireless Networks 6/2020 Zur Ausgabe

Neuer Inhalt