Skip to main content
Erschienen in:

06.01.2024

A Dual-Layer Network Deep Reinforcement Learning Algorithm for Multi-objective Signal Temporal Logic Tasks

verfasst von: Yixiao Yang, Tiange Yang, Yuanyuan Zou, Shaoyuan Li, Yaru Yang

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The path planning strategies of multi-objective tasks for autonomous agents are applied more and more widely in the areas of resource exploration, factory transportation, post-disaster relief, etc. These tasks typically require access to all target points within a limited time and can be formulated by signal temporal logic (STL) formulas with multiple logic AND. This paper presents a dual-layer network deep reinforcement learning algorithm to address the decision problem of the multi-objective STL tasks. First, the multi-objective optimization problem is represented by iterable UNTIL operators, and each sub-task is encoded into an one-hot vector. In the control layer, one-hot vector is updated according to the ongoing sub-task. Based on the coupling input of agent states and one-hot vector, the neural network controller is trained to complete the sub-tasks in the given order strictly. In the order layer, robust-based weighted entropy is assigned according to the agent trajectory robust value of each sub-task. By maximizing the entropy, the order priority of access to the target points is updated periodicity and is passed into the control layer. Simulation and comparison with the traditional method show that our proposed dual-layer network algorithm has the reliability for strictly completing sub-tasks of multi-objective task reformed by UNTIL operators and the effectiveness of the access order planning for multi-objective tasks with improved real-time performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
5.
Zurück zum Zitat R. Carelli, C. De la Cruz, F. Roberti, Centralized formation control of non-holonomic mobile robots. Lat. Am. Appl. Res. 36(2), 63–69 (2006) R. Carelli, C. De la Cruz, F. Roberti, Centralized formation control of non-holonomic mobile robots. Lat. Am. Appl. Res. 36(2), 63–69 (2006)
12.
Zurück zum Zitat P. Khanan, Advancements in reinforcement learning: from theory to real-world applications. Int. J. Sustain. Dev. Comput. Sci. 5(1) (2023) P. Khanan, Advancements in reinforcement learning: from theory to real-world applications. Int. J. Sustain. Dev. Comput. Sci. 5(1) (2023)
15.
Zurück zum Zitat M. Li, H. Liu, M. Yan, J. Wu, L. Jin, H. He, Data-driven bi-level predictive energy management strategy for fuel cell buses with algorithmics fusion. Energy Convers. Manage: X 20, 100414 (2023) M. Li, H. Liu, M. Yan, J. Wu, L. Jin, H. He, Data-driven bi-level predictive energy management strategy for fuel cell buses with algorithmics fusion. Energy Convers. Manage: X 20, 100414 (2023)
22.
Zurück zum Zitat A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019) A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)
26.
Zurück zum Zitat H. Venkataraman, D. Aksaray, P. Seiler, Tractable reinforcement learning of signal temporal logic objectives, in Learning for Dynamics and Control (2020), pp. 308–317 H. Venkataraman, D. Aksaray, P. Seiler, Tractable reinforcement learning of signal temporal logic objectives, in Learning for Dynamics and Control (2020), pp. 308–317
28.
Zurück zum Zitat B. Zhao, X. Zhao, Deep reinforcement learning resource allocation in wireless sensor networks with energy harvesting and relay. IEEE Internet Things J. 9(3), 2330–2345 (2021)CrossRef B. Zhao, X. Zhao, Deep reinforcement learning resource allocation in wireless sensor networks with energy harvesting and relay. IEEE Internet Things J. 9(3), 2330–2345 (2021)CrossRef
Metadaten
Titel
A Dual-Layer Network Deep Reinforcement Learning Algorithm for Multi-objective Signal Temporal Logic Tasks
verfasst von
Yixiao Yang
Tiange Yang
Yuanyuan Zou
Shaoyuan Li
Yaru Yang
Publikationsdatum
06.01.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 4/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02581-2