Skip to main content

2021 | OriginalPaper | Buchkapitel

12. A Dynamic Evaluation Mechanism of Human Upper Limb Muscle Forces

verfasst von : Qing Tao, Zhaobo Li, Quanbao Lai, Shoudong Wang, Lili Liu, Jinsheng Kang

Erschienen in: Advances in Artificial Intelligence, Computation, and Data Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic evaluation mechanisms of the human upper limb are of great value for research and applications in upper limb rehabilitation, especially for the development of robotic upper limb rehabilitation systems. This paper proposes a muscle force prediction method based on the Hill muscle model. The proposed approach, which combines sEMG signals and kinematic data, provides a deep understanding of the dynamic motion mechanisms and parameters that characterize the upper limbs of the human body. The study provides a theoretical benchmark for the evaluation of rehabilitation training practices and for improved designs of upper limb rehabilitation robots that are used for upper limb neuro-rehabilitation. Specifically, the system collected motion data and sEMG signals from the upper limbs of the human body through a high-speed infrared motion capture system and skin sEMG sensors. By applying human kinematics and dynamics theories, real-time joint angle and torque information was obtained and imported into OpenSim. This platform can simulate the real-time muscle force values produced by the upper limbs during movements. The myoelectric signals were first filtered to remove noise, and an exponential model was then used to obtain the muscle activation. These data were then entered into the Hill-type prediction model to determine an individual’s muscle forces. In this paper, grasping movements commonly used in everyday situations were taken as a testing case. The results of the experiments showed that an individual’s muscle forces can be predicted using a Hill-type model. The results are consistent with those from simulated muscle force models and can reflect the real forces experienced during upper limb exercises.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Perez R, Costa U, Torrent M, Solana J, Opisso E, Caceres C, Tormos JM, Medina J, Gomez EJ (2017) Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors 10:10733–10751CrossRef Perez R, Costa U, Torrent M, Solana J, Opisso E, Caceres C, Tormos JM, Medina J, Gomez EJ (2017) Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors 10:10733–10751CrossRef
3.
Zurück zum Zitat Rahman MH, Rahman MJ, Cristobal OL, Saad M, Kenné JP, Archambault PS (2015) Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 33:19–39CrossRef Rahman MH, Rahman MJ, Cristobal OL, Saad M, Kenné JP, Archambault PS (2015) Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 33:19–39CrossRef
4.
Zurück zum Zitat Albert CL, Peter DG, Lorie GR, Jodie KH, George FW, Daniel GF, Robert JR, Todd HW, Hermano IK, Bruce TV, Christopher TB, Dawn MB, Pamela WD, Barbara HC, Alysia DM, Stephen EN, Susan SC, Janet MP, Grant DH, Peter P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. New England J Med 362:1772–1783CrossRef Albert CL, Peter DG, Lorie GR, Jodie KH, George FW, Daniel GF, Robert JR, Todd HW, Hermano IK, Bruce TV, Christopher TB, Dawn MB, Pamela WD, Barbara HC, Alysia DM, Stephen EN, Susan SC, Janet MP, Grant DH, Peter P (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. New England J Med 362:1772–1783CrossRef
5.
Zurück zum Zitat Farulla GA, Pianu D, Cempini M, Cortese M, Russo LO, Indaco M, Nerino R, Chimienti A, Oddo CM, Vitiello N (2016) Vision-based pose estimation for robot-mediated hand telerehabilitation. Sensors 16:208CrossRef Farulla GA, Pianu D, Cempini M, Cortese M, Russo LO, Indaco M, Nerino R, Chimienti A, Oddo CM, Vitiello N (2016) Vision-based pose estimation for robot-mediated hand telerehabilitation. Sensors 16:208CrossRef
6.
Zurück zum Zitat Borboni A, Maddalena M, Rastegarpanah A, Saadat M, Aggogeri F (2016) Kinematic performance enhancement of wheelchair-mounted robotic arm by adding a linear drive. 2016 IEEE international symposium on medical measurements and applications (MeMeA) Borboni A, Maddalena M, Rastegarpanah A, Saadat M, Aggogeri F (2016) Kinematic performance enhancement of wheelchair-mounted robotic arm by adding a linear drive. 2016 IEEE international symposium on medical measurements and applications (MeMeA)
7.
Zurück zum Zitat Zhang L, Zheng Z, Li G, Sun Y, Jiang G, Kong J, Tao B, Xu S, Yu H, Liu H (2018) Tactile sensing and feedback in SEMG hand. Int J Comput Sci Math 9(4):365–376CrossRef Zhang L, Zheng Z, Li G, Sun Y, Jiang G, Kong J, Tao B, Xu S, Yu H, Liu H (2018) Tactile sensing and feedback in SEMG hand. Int J Comput Sci Math 9(4):365–376CrossRef
8.
Zurück zum Zitat Rzyman G, Szkopek J, Redlarski G, Palkowski A (2020) Upper limb bionic orthoses: general overview and forecasting changes. Appl Sci 10(15):5323CrossRef Rzyman G, Szkopek J, Redlarski G, Palkowski A (2020) Upper limb bionic orthoses: general overview and forecasting changes. Appl Sci 10(15):5323CrossRef
9.
Zurück zum Zitat Meattini R, Chiaravalli D, Palli G, Melchiorri C (2020) sEMG-based human-in-the-loop control of elbow assistive robots for physical tasks and muscle strength training. IEEE Robot Autom Lett 5(4):5795–5802CrossRef Meattini R, Chiaravalli D, Palli G, Melchiorri C (2020) sEMG-based human-in-the-loop control of elbow assistive robots for physical tasks and muscle strength training. IEEE Robot Autom Lett 5(4):5795–5802CrossRef
10.
Zurück zum Zitat Xu G, Song A, PanL, Li H, Liang Z, Zhu S, Xu B, Li J (2012) Adaptive hierarchical control for the muscle strength training of stroke survivors in robot-aided upper-limb rehabilitation. Int J Adv Robot Syst, https://doi.org/10.5772/51035 Xu G, Song A, PanL, Li H, Liang Z, Zhu S, Xu B, Li J (2012) Adaptive hierarchical control for the muscle strength training of stroke survivors in robot-aided upper-limb rehabilitation. Int J Adv Robot Syst, https://​doi.​org/​10.​5772/​51035
11.
Zurück zum Zitat Hogan N, Krebs HI, Charnnarong J, Srikrishna P, Sharon A (1993) MIT-MANUS: a workstation for manual therapy and training II[P]. Other Conferences Hogan N, Krebs HI, Charnnarong J, Srikrishna P, Sharon A (1993) MIT-MANUS: a workstation for manual therapy and training II[P]. Other Conferences
13.
Zurück zum Zitat Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC (2012) Intention-based EMG control for powered exoskeletons. IEEE Trans Bio-Med Eng 59(8) Lenzi T, De Rossi SMM, Vitiello N, Carrozza MC (2012) Intention-based EMG control for powered exoskeletons. IEEE Trans Bio-Med Eng 59(8)
14.
Zurück zum Zitat Shing LH, Quan XS (2011) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects[J]. Med Eng Phys 34(3) Shing LH, Quan XS (2011) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects[J]. Med Eng Phys 34(3)
15.
Zurück zum Zitat Hao L, Jun T, Pan L (2018) Human-robot cooperative control based on sEMG for the upper limb exoskeleton robot. Robot Auton Syst Hao L, Jun T, Pan L (2018) Human-robot cooperative control based on sEMG for the upper limb exoskeleton robot. Robot Auton Syst
16.
Zurück zum Zitat He L, Xiong C, Liu K, Huang J, He C, Chen WB (2018) Mechatronic design of a synergetic upper limb exoskeletal robot and wrench-based assistive control. J Bionic Eng 15:247–259CrossRef He L, Xiong C, Liu K, Huang J, He C, Chen WB (2018) Mechatronic design of a synergetic upper limb exoskeletal robot and wrench-based assistive control. J Bionic Eng 15:247–259CrossRef
17.
Zurück zum Zitat Nelson CA, Nouaille L, Poisson G (2020) A redundant rehabilitation robot with a variable stiffness mechanism. Mech Mach Theory 150 Nelson CA, Nouaille L, Poisson G (2020) A redundant rehabilitation robot with a variable stiffness mechanism. Mech Mach Theory 150
18.
Zurück zum Zitat Leiyu Z, Jianfeng L, Ying C, Mingjie D, Bin F, Pengfei Z (2020) Design and performance analysis of a parallel wrist rehabilitation robot (PWRR). Robot Auton Syst 125(C) Leiyu Z, Jianfeng L, Ying C, Mingjie D, Bin F, Pengfei Z (2020) Design and performance analysis of a parallel wrist rehabilitation robot (PWRR). Robot Auton Syst 125(C)
19.
Zurück zum Zitat Nelson Carl A, Laurence N, Gérard P (2019) A redundant rehabilitation robot with a variable stiffness mechanism. Mechan Mach Theory 150 Nelson Carl A, Laurence N, Gérard P (2019) A redundant rehabilitation robot with a variable stiffness mechanism. Mechan Mach Theory 150
20.
Zurück zum Zitat Ning Y, Xu W, Huang H, Li B, Liu F (2019) Design methodology of a novel variable stiffness actuator based on antagonistic-driven mechanism. Proc Inst Mech Eng Part C: J Mech Eng Sci 233(19–20) Ning Y, Xu W, Huang H, Li B, Liu F (2019) Design methodology of a novel variable stiffness actuator based on antagonistic-driven mechanism. Proc Inst Mech Eng Part C: J Mech Eng Sci 233(19–20)
21.
Zurück zum Zitat Meshram DA, Patil DD (2020) 5G Enabled tactile internet for tele-robotic surgery. Procedia Comput Sci 171 Meshram DA, Patil DD (2020) 5G Enabled tactile internet for tele-robotic surgery. Procedia Comput Sci 171
22.
Zurück zum Zitat Platz T, Pinkowski C, Van WF, Wijck FV, Kim IH, Bella PD, Johnson G (2005) Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer test, action research arm test and box and block test: a multicentre study. Clin Rehab 19:404–411CrossRef Platz T, Pinkowski C, Van WF, Wijck FV, Kim IH, Bella PD, Johnson G (2005) Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer test, action research arm test and box and block test: a multicentre study. Clin Rehab 19:404–411CrossRef
24.
Zurück zum Zitat Proud EL, Miller KJ, Bilney B, Balachandran S, McGinley JL, Morris ME (2015) Evaluation of measures of upper limb functioning and disability in people with Parkinson disease: a systematic review. Arch Phys Med Rehab 96:540–551CrossRef Proud EL, Miller KJ, Bilney B, Balachandran S, McGinley JL, Morris ME (2015) Evaluation of measures of upper limb functioning and disability in people with Parkinson disease: a systematic review. Arch Phys Med Rehab 96:540–551CrossRef
25.
Zurück zum Zitat Boser QA, Valevicius AM, Lavoie EB, Chapman CS, Pilarski PM, Hebert JS, Vette AH (2018) Cluster-based upper body marker models for three-dimensional kinematic analysis: comparison with an anatomical model and reliability analysis. J Biomech 72:228–234CrossRefPubMed Boser QA, Valevicius AM, Lavoie EB, Chapman CS, Pilarski PM, Hebert JS, Vette AH (2018) Cluster-based upper body marker models for three-dimensional kinematic analysis: comparison with an anatomical model and reliability analysis. J Biomech 72:228–234CrossRefPubMed
26.
Zurück zum Zitat Caimmi M, Guanziroli E, Malosio M, Pedrocchi N, Vicentini F, Molinari Tosatti L, Molteni F (2015) Normative data for an instrumental assessment of the upper-limb functionality. Biomed Res Int 484131 Caimmi M, Guanziroli E, Malosio M, Pedrocchi N, Vicentini F, Molinari Tosatti L, Molteni F (2015) Normative data for an instrumental assessment of the upper-limb functionality. Biomed Res Int 484131
27.
Zurück zum Zitat Hebert JS, Lewicke J, Williams TR, Vette AH (2014) Normative data for a modified box and blocks test measuring upper limb function via motion capture. J Rehab Res Dev 51:919–932CrossRef Hebert JS, Lewicke J, Williams TR, Vette AH (2014) Normative data for a modified box and blocks test measuring upper limb function via motion capture. J Rehab Res Dev 51:919–932CrossRef
28.
Zurück zum Zitat Sohn WJ, Sipahi R, Sanger TD, Sternad D (2019) Portable motion-analysis device for upper-limb research, assessment, and rehabilitation in non-laboratory settings. IEEE J Trans Eng Health Med 7:1–14CrossRef Sohn WJ, Sipahi R, Sanger TD, Sternad D (2019) Portable motion-analysis device for upper-limb research, assessment, and rehabilitation in non-laboratory settings. IEEE J Trans Eng Health Med 7:1–14CrossRef
29.
Zurück zum Zitat Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM (2018) Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol 108:227–237 Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM (2018) Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol 108:227–237
30.
Zurück zum Zitat Goble JA, Zhang Y, Shimansky Y, Sharma S, Dounskaia NV (2007) Directional biases reveal utilization of arm’s biomechanical properties for optimization of motor behavior. J Neurophysiol 98:1240–1252CrossRefPubMed Goble JA, Zhang Y, Shimansky Y, Sharma S, Dounskaia NV (2007) Directional biases reveal utilization of arm’s biomechanical properties for optimization of motor behavior. J Neurophysiol 98:1240–1252CrossRefPubMed
31.
Zurück zum Zitat William HJ, Shivam P, Priyanshu A, Sadie HR, Bowie RL, Michael DB, Marcia KO’M (2018) Toward improved surgical training: Delivering smoothness feedback using haptic cues. 2018 IEEE haptics symposium (HAPTICS), pp 241–246 William HJ, Shivam P, Priyanshu A, Sadie HR, Bowie RL, Michael DB, Marcia KO’M (2018) Toward improved surgical training: Delivering smoothness feedback using haptic cues. 2018 IEEE haptics symposium (HAPTICS), pp 241–246
32.
Zurück zum Zitat Zhang LL, Zhou J, Zhang XA, Wang CT (2011) Upper limb musculo-skeletal model for biomechanical investigation of elbow flexion movement. J Shanghai Jiaotong Univ (Science) 16:61–64 Zhang LL, Zhou J, Zhang XA, Wang CT (2011) Upper limb musculo-skeletal model for biomechanical investigation of elbow flexion movement. J Shanghai Jiaotong Univ (Science) 16:61–64
33.
Zurück zum Zitat Ma R, Zhang L, Li G, Jiang D, Xu S, Chen D (2020) Grasping force prediction based on sEMG signals. Alexandria Eng J 59(3):1135–1147CrossRef Ma R, Zhang L, Li G, Jiang D, Xu S, Chen D (2020) Grasping force prediction based on sEMG signals. Alexandria Eng J 59(3):1135–1147CrossRef
35.
Zurück zum Zitat Ursula T, Hermann S, Richard B, Nathalie A (2019) Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J Biomech 86:55–63CrossRef Ursula T, Hermann S, Richard B, Nathalie A (2019) Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J Biomech 86:55–63CrossRef
36.
37.
Zurück zum Zitat Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950CrossRefPubMed Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950CrossRefPubMed
38.
Zurück zum Zitat Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM (2015) Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Eng 18:1–14CrossRef Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM (2015) Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Eng 18:1–14CrossRef
39.
Zurück zum Zitat David GL, Thor FB (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36:765–776CrossRef David GL, Thor FB (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36:765–776CrossRef
40.
Zurück zum Zitat Christian F, Günter H (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Rob 24:872–882CrossRef Christian F, Günter H (2008) A human–exoskeleton interface utilizing electromyography. IEEE Trans Rob 24:872–882CrossRef
41.
Zurück zum Zitat Jiateng H, Yingfei S, Lixin S, Bingyu P, Zhipei H, Jiankang W, Zhiqiang Z (2018) A pilot study of individual muscle force prediction during elbow flexion and extension in the neurorehabilitation field. Sensors 16:2–15 Jiateng H, Yingfei S, Lixin S, Bingyu P, Zhipei H, Jiankang W, Zhiqiang Z (2018) A pilot study of individual muscle force prediction during elbow flexion and extension in the neurorehabilitation field. Sensors 16:2–15
Metadaten
Titel
A Dynamic Evaluation Mechanism of Human Upper Limb Muscle Forces
verfasst von
Qing Tao
Zhaobo Li
Quanbao Lai
Shoudong Wang
Lili Liu
Jinsheng Kang
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_12