Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

05.04.2019

A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties

verfasst von: Xue Li, Jianhua Qian, Junhua Li, Jiasheng Xu, Jinjuan Xing, Lin Liu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Antimony-doped tin oxide (ATO) coated TiO2 (TiO2@ATO) conductive composites were synthesized by a sol–gel method using acetylacetone as the chelating agent in water based. As-synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electronic microscopy and high-resolution transmission electron microscopy, thermogravimetric analysis, ultraviolet–visible (UV–Vis) spectroscopy and Fourier transform infrared spectroscopy. The results showed that the optical band gap gradually decreases from 3.081 eV to 3.068 eV with the increase of antimony doping concentration. The optimal molar ratio of acetylacetone to metal ions was 4 while the water content was 50 mL. When the antimony doping concentration was 35 mol%, TiO2@ATO composite possessed the lowest resistivity of 4.5 Ω cm. ATO nanoparticles with an average particle size of 8.3 nm formed a shell of about 10 nm on the surface of TiO2. In addition, the corresponding formation mechanism of TiO2@ATO composite was proposed on the basis of the experimental analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Appl. Surf. Sci. 286, 417–420 (2013)CrossRef S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant. Appl. Surf. Sci. 286, 417–420 (2013)CrossRef
2.
Zurück zum Zitat Y. Ren, G. Zhao, Y. Chen, Fabrication of textured SnO2:F thin films by spray pyrolysis. Appl. Surf. Sci. 258, 914–918 (2011)CrossRef Y. Ren, G. Zhao, Y. Chen, Fabrication of textured SnO2:F thin films by spray pyrolysis. Appl. Surf. Sci. 258, 914–918 (2011)CrossRef
3.
Zurück zum Zitat C. Hudaya, B.J. Jeon, J.K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl. Mater. Interfaces. 7, 57–61 (2015)CrossRef C. Hudaya, B.J. Jeon, J.K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl. Mater. Interfaces. 7, 57–61 (2015)CrossRef
4.
Zurück zum Zitat C.L. Hsu, Y.C. Lu, Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires. Nanoscale 4, 5710–5717 (2012)CrossRef C.L. Hsu, Y.C. Lu, Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires. Nanoscale 4, 5710–5717 (2012)CrossRef
5.
Zurück zum Zitat M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar, M. Gratzel, Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. Nano Lett. 12, 5431–5435 (2012)CrossRef M. Stefik, M. Cornuz, N. Mathews, T. Hisatomi, S. Mhaisalkar, M. Gratzel, Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. Nano Lett. 12, 5431–5435 (2012)CrossRef
6.
Zurück zum Zitat J. Mazloom, F.E. Ghodsi, M. Gholami, Fiber-like stripe ATO (SnO2:Sb) nanostructured thin films grown by sol–gel method: optical, topographical and electrical properties. J. Alloys Compd. 579, 384–393 (2013)CrossRef J. Mazloom, F.E. Ghodsi, M. Gholami, Fiber-like stripe ATO (SnO2:Sb) nanostructured thin films grown by sol–gel method: optical, topographical and electrical properties. J. Alloys Compd. 579, 384–393 (2013)CrossRef
7.
Zurück zum Zitat J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, G.H. Li, Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 15, 3296 (2013)CrossRef J.M. Xu, L. Li, S. Wang, H.L. Ding, Y.X. Zhang, G.H. Li, Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 15, 3296 (2013)CrossRef
8.
Zurück zum Zitat Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21, 3202–3209 (2009)CrossRef Y. Wang, I. Djerdj, B. Smarsly, M. Antonietti, Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 21, 3202–3209 (2009)CrossRef
9.
Zurück zum Zitat Y. Wang, J. Zheng, F. Jiang, M. Zhang, Synthesis and conductive performance of antimony-doped tin oxide-coated TiO2 by the co-precipitation method. J. Mater. Sci. 25, 4524–4530 (2014) Y. Wang, J. Zheng, F. Jiang, M. Zhang, Synthesis and conductive performance of antimony-doped tin oxide-coated TiO2 by the co-precipitation method. J. Mater. Sci. 25, 4524–4530 (2014)
10.
Zurück zum Zitat H.Y.P. Hu, Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl. Clay. Sci. 48, 368–374 (2010)CrossRef H.Y.P. Hu, Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Appl. Clay. Sci. 48, 368–374 (2010)CrossRef
11.
Zurück zum Zitat S. Sladkevich, N. Kyi, J. Gun, P. Prikhodchenko, S. Ischuk, O. Lev, Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520, 152–158 (2011)CrossRef S. Sladkevich, N. Kyi, J. Gun, P. Prikhodchenko, S. Ischuk, O. Lev, Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films 520, 152–158 (2011)CrossRef
12.
Zurück zum Zitat P. Hu, H. Yang, Polypropylene filled with kaolinite-based conductive powders. Appl. Clay. Sci. 83–84, 122–128 (2013)CrossRef P. Hu, H. Yang, Polypropylene filled with kaolinite-based conductive powders. Appl. Clay. Sci. 83–84, 122–128 (2013)CrossRef
13.
Zurück zum Zitat W. Liu, Y. Wang, M. Ge, Q. Gao, One-dimensional light-colored conductive antimony-doped tin oxide@TiO2 whiskers: synthesis and applications. J. Mater. Sci. 29, 619–627 (2017) W. Liu, Y. Wang, M. Ge, Q. Gao, One-dimensional light-colored conductive antimony-doped tin oxide@TiO2 whiskers: synthesis and applications. J. Mater. Sci. 29, 619–627 (2017)
14.
Zurück zum Zitat Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 634, 37–42 (2015)CrossRef Y. Li, J. Wang, B. Feng, K. Duan, J. Weng, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 634, 37–42 (2015)CrossRef
15.
Zurück zum Zitat R. Outemzabet, N. Bouras, N. Kesri, Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films 515, 6518–6520 (2007)CrossRef R. Outemzabet, N. Bouras, N. Kesri, Microstructure and physical properties of nanofaceted antimony doped tin oxide thin films deposited by chemical vapor deposition on different substrates. Thin Solid Films 515, 6518–6520 (2007)CrossRef
16.
Zurück zum Zitat C.M.N. Naghavi, L. Dupont, J.B. Leriche, J.M. Tarascon, On the electrochromic properties of antimony–tin oxide thin films deposited by pulsed laser deposition. Solid State Ionics 156, 463–474 (2003)CrossRef C.M.N. Naghavi, L. Dupont, J.B. Leriche, J.M. Tarascon, On the electrochromic properties of antimony–tin oxide thin films deposited by pulsed laser deposition. Solid State Ionics 156, 463–474 (2003)CrossRef
17.
Zurück zum Zitat Y. Hu, H. Zhong, Y. Wang, L. Lu, H. Yang, TiO2/antimony-doped tin oxide: highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property. Sol. Energy Mater. Sol. Cells 174, 499–508 (2018)CrossRef Y. Hu, H. Zhong, Y. Wang, L. Lu, H. Yang, TiO2/antimony-doped tin oxide: highly water-dispersed nano composites with excellent IR insulation and super-hydrophilic property. Sol. Energy Mater. Sol. Cells 174, 499–508 (2018)CrossRef
18.
Zurück zum Zitat L.S. Wang, H.F. Lu, R.Y. Hong, W.G. Feng, Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol. 224, 124–128 (2012)CrossRef L.S. Wang, H.F. Lu, R.Y. Hong, W.G. Feng, Synthesis and electrical resistivity analysis of ATO-coated talc. Powder Technol. 224, 124–128 (2012)CrossRef
19.
Zurück zum Zitat S.S. Lekshmy, G.P. Daniel, K. Joy, Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications. Appl. Surf. Sci. 274, 95–100 (2013)CrossRef S.S. Lekshmy, G.P. Daniel, K. Joy, Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications. Appl. Surf. Sci. 274, 95–100 (2013)CrossRef
20.
Zurück zum Zitat B. Rodríguez García, Á. Reyes Carmona, I. Jiménez Morales, M. Blasco Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán Mascarós, F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustain. Energy Fuels 2, 589–597 (2018)CrossRef B. Rodríguez García, Á. Reyes Carmona, I. Jiménez Morales, M. Blasco Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán Mascarós, F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustain. Energy Fuels 2, 589–597 (2018)CrossRef
21.
Zurück zum Zitat J. Zhang, L. Gao, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles. Inorg. Chem. Commun. 7, 91–93 (2004)CrossRef J. Zhang, L. Gao, Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles. Inorg. Chem. Commun. 7, 91–93 (2004)CrossRef
22.
Zurück zum Zitat X. Zhong, B. Yang, X. Zhang, J. Jia, G. Yi, Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology 10, 365–370 (2012)CrossRef X. Zhong, B. Yang, X. Zhang, J. Jia, G. Yi, Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology 10, 365–370 (2012)CrossRef
23.
Zurück zum Zitat Y. Li, J. Liu, J. Liang, X. Yu, D. Li, Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO2 microspheres. ACS Appl. Mater. Interfaces 7, 6574–6583 (2015)CrossRef Y. Li, J. Liu, J. Liang, X. Yu, D. Li, Tunable solar-heat shielding property of transparent films based on mesoporous Sb-doped SnO2 microspheres. ACS Appl. Mater. Interfaces 7, 6574–6583 (2015)CrossRef
24.
Zurück zum Zitat Y.Q. Li, J.L. Wang, S.Y. Fu, S.G. Mei, J.M. Zhang, K. Yong, Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method. Mater. Res. Bull. 45, 677–681 (2010)CrossRef Y.Q. Li, J.L. Wang, S.Y. Fu, S.G. Mei, J.M. Zhang, K. Yong, Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method. Mater. Res. Bull. 45, 677–681 (2010)CrossRef
25.
Zurück zum Zitat S. Liu, W. Ding, Y. Gu, W. Chai, Effect of Sb doping on the microstructure and optoelectrical properties of Sb-doped SnO2 films prepared by spin coating. Phys. Scr. 85, 065601 (2012)CrossRef S. Liu, W. Ding, Y. Gu, W. Chai, Effect of Sb doping on the microstructure and optoelectrical properties of Sb-doped SnO2 films prepared by spin coating. Phys. Scr. 85, 065601 (2012)CrossRef
26.
Zurück zum Zitat H. Liu, T. Lv, C. Zhu, X. Su, Z. Zhu, Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A 396, 136–142 (2015)CrossRef H. Liu, T. Lv, C. Zhu, X. Su, Z. Zhu, Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A 396, 136–142 (2015)CrossRef
27.
Zurück zum Zitat M. Radecka, A. Wnuk, A. Trenczek Zajac, K. Schneider, K. Zakrzewska, TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting. Int. J. Hydrog. Energy 40, 841–851 (2015)CrossRef M. Radecka, A. Wnuk, A. Trenczek Zajac, K. Schneider, K. Zakrzewska, TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting. Int. J. Hydrog. Energy 40, 841–851 (2015)CrossRef
28.
Zurück zum Zitat K. Maeda, N. Murakami, T. Ohno, Dependence of activity of rutile titanium(IV) oxide powder for photocatalytic overall water splitting on structural properties. J. Phys. Chem. C 118, 9093–9100 (2014)CrossRef K. Maeda, N. Murakami, T. Ohno, Dependence of activity of rutile titanium(IV) oxide powder for photocatalytic overall water splitting on structural properties. J. Phys. Chem. C 118, 9093–9100 (2014)CrossRef
29.
Zurück zum Zitat X. Xu, G. Yang, J. Liang, S. Ding, C. Tang, H. Yang, W. Yan, G. Yang, D. Yu, Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J. Mater. Chem. A 2, 116–122 (2014)CrossRef X. Xu, G. Yang, J. Liang, S. Ding, C. Tang, H. Yang, W. Yan, G. Yang, D. Yu, Fabrication of one-dimensional heterostructured TiO2@SnO2 with enhanced photocatalytic activity. J. Mater. Chem. A 2, 116–122 (2014)CrossRef
30.
Zurück zum Zitat J. Mazloom, F.E. Ghodsi, H. Zamani, H. Golmojdeh, Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1−xSbxO2 nanoparticles. J. Mater. Sci. 28, 2183–2192 (2016) J. Mazloom, F.E. Ghodsi, H. Zamani, H. Golmojdeh, Relation between physical properties, enhanced photodegradation of organic dyes and antibacterial potential of Sn1−xSbxO2 nanoparticles. J. Mater. Sci. 28, 2183–2192 (2016)
31.
Zurück zum Zitat J. Mazloom, F.E. Ghodsi, Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2: Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 48, 1468–1476 (2013)CrossRef J. Mazloom, F.E. Ghodsi, Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2: Co thin films prepared by sol–gel spin coating technique. Mater. Res. Bull. 48, 1468–1476 (2013)CrossRef
32.
Zurück zum Zitat A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)CrossRef A.S. Ahmed, M. Shafeeq, M.L. Singla, S. Tabassum, A.H. Naqvi, A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1–6 (2011)CrossRef
33.
Zurück zum Zitat S. Park, S.D. Seo, S. Lee, S.W. Seo, K.S. Park, C.W. Lee, D.W. Kim, K.S. Hong, Sb:SnO2@TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 116, 21717–21726 (2012)CrossRef S. Park, S.D. Seo, S. Lee, S.W. Seo, K.S. Park, C.W. Lee, D.W. Kim, K.S. Hong, Sb:SnO2@TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 116, 21717–21726 (2012)CrossRef
34.
Zurück zum Zitat V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, D. Fattakhova Rohlfing, Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol−gel procedure. Chem. Mater. 21, 5229–5236 (2009)CrossRef V. Müller, M. Rasp, G. Štefanić, J. Ba, S. Günther, J. Rathousky, M. Niederberger, D. Fattakhova Rohlfing, Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol−gel procedure. Chem. Mater. 21, 5229–5236 (2009)CrossRef
35.
Zurück zum Zitat A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Sensing properties of sprayed antimony doped tin oxide thin films: solution molarity. J. Alloys Compd. 509, 3108–3115 (2011)CrossRef A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Sensing properties of sprayed antimony doped tin oxide thin films: solution molarity. J. Alloys Compd. 509, 3108–3115 (2011)CrossRef
36.
Zurück zum Zitat Y. Wang, T. Chen, Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode. Electrochim. Acta 54, 3510–3515 (2009)CrossRef Y. Wang, T. Chen, Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode. Electrochim. Acta 54, 3510–3515 (2009)CrossRef
37.
Zurück zum Zitat J.P. Correa Baena, A.G. Agrios, Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl. Mater. Interfaces 6, 19127–19134 (2014)CrossRef J.P. Correa Baena, A.G. Agrios, Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl. Mater. Interfaces 6, 19127–19134 (2014)CrossRef
38.
Zurück zum Zitat F. Montilla, A. De Battisti, S. Barison, S. Daolio, J.L. Va’zquez, Preparation and characterization of antimony-doped tin dioxide electrodes 3 XPS and SIMS characterization. J. Phys. Chem. B 108, 15976–15981 (2004)CrossRef F. Montilla, A. De Battisti, S. Barison, S. Daolio, J.L. Va’zquez, Preparation and characterization of antimony-doped tin dioxide electrodes 3 XPS and SIMS characterization. J. Phys. Chem. B 108, 15976–15981 (2004)CrossRef
39.
Zurück zum Zitat T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J. Phys. Chem. Solids 70, 993–999 (2009)CrossRef T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J. Phys. Chem. Solids 70, 993–999 (2009)CrossRef
40.
Zurück zum Zitat A.M. Volosin, S. Sharma, C. Traverse, N. Newman, D.K. Seo, One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks. J. Mater. Chem. 21, 13232 (2011)CrossRef A.M. Volosin, S. Sharma, C. Traverse, N. Newman, D.K. Seo, One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks. J. Mater. Chem. 21, 13232 (2011)CrossRef
41.
Zurück zum Zitat T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mater. Lett. 63, 896–898 (2009)CrossRef T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Mater. Lett. 63, 896–898 (2009)CrossRef
42.
Zurück zum Zitat L.K. Dua, A. De, S. Chakraborty, P.K. Biswas, Study of spin coated high antimony content Sn–Sb oxide films on silica glass. Mater. Charact. 59, 578–586 (2008)CrossRef L.K. Dua, A. De, S. Chakraborty, P.K. Biswas, Study of spin coated high antimony content Sn–Sb oxide films on silica glass. Mater. Charact. 59, 578–586 (2008)CrossRef
43.
Zurück zum Zitat L.C.C. Jeffrey, C.S. Wu, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor. J. Membr. Sci. 167, 253–261 (2000)CrossRef L.C.C. Jeffrey, C.S. Wu, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor. J. Membr. Sci. 167, 253–261 (2000)CrossRef
44.
Zurück zum Zitat S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang, Z.J. Cheng, Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J. Eur. Ceram. Soc. 25, 673–679 (2005)CrossRef S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang, Z.J. Cheng, Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J. Eur. Ceram. Soc. 25, 673–679 (2005)CrossRef
45.
Zurück zum Zitat P. Hu, H. Yang, Sb–SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation. Phys. Chem. Miner. 39, 339–349 (2012)CrossRef P. Hu, H. Yang, Sb–SnO2 nanoparticles onto kaolinite rods: assembling process and interfacial investigation. Phys. Chem. Miner. 39, 339–349 (2012)CrossRef
46.
Zurück zum Zitat Y. Du, J. Yan, Q. Meng, J. Wang, H. Dai, Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater. Chem. Phys. 133, 907–912 (2012)CrossRef Y. Du, J. Yan, Q. Meng, J. Wang, H. Dai, Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure. Mater. Chem. Phys. 133, 907–912 (2012)CrossRef
47.
Zurück zum Zitat P. Hu, H. Yang, J. Ouyang, Synthesis and characterization of Sb–SnO2/kaolinites nanoparticles. Appl. Clay. Sci. 55, 151–157 (2012)CrossRef P. Hu, H. Yang, J. Ouyang, Synthesis and characterization of Sb–SnO2/kaolinites nanoparticles. Appl. Clay. Sci. 55, 151–157 (2012)CrossRef
Metadaten
Titel
A facile synthesis of antimony-doped tin oxide-coated TiO2 composites and their electrical properties
verfasst von
Xue Li
Jianhua Qian
Junhua Li
Jiasheng Xu
Jinjuan Xing
Lin Liu
Publikationsdatum
05.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01259-3

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt