Skip to main content
Erschienen in: Numerical Algorithms 4/2020

04.02.2020 | Original Paper

A fast method for variable-order space-fractional diffusion equations

verfasst von: Jinhong Jia, Xiangcheng Zheng, Hongfei Fu, Pingfei Dai, Hong Wang

Erschienen in: Numerical Algorithms | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop a fast divide-and-conquer indirect collocation method for the homogeneous Dirichlet boundary value problem of variable-order space-fractional diffusion equations. Due to the impact of the space-dependent variable order, the resulting stiffness matrix of the numerical scheme does not have a Toeplitz structure. In this paper, we derive a fast approximation of the coefficient matrix by the means of a finite sum of Toeplitz matrices multiplied by diagonal matrices. We show that the approximation is asymptotically consistent with the original problem, which requires \(O(N\log ^{2} N)\) memory and \(O(N\log ^{3} N)\) computational complexity with N being the numbers of unknowns. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Algebra Appl. 24, e2093 (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)MATH Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)MATH
4.
Zurück zum Zitat Benson, D., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport in Porous Media 42, 211–240 (2001)MathSciNetCrossRef Benson, D., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport in Porous Media 42, 211–240 (2001)MathSciNetCrossRef
5.
Zurück zum Zitat Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)MathSciNetCrossRef Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat Bertaccini, D., Durastante, F.: Limited memory block preconditioners for fast solution of fractional partial differential equations. J. Sci. Comput. 77, 950–970 (2018)MathSciNetCrossRef Bertaccini, D., Durastante, F.: Limited memory block preconditioners for fast solution of fractional partial differential equations. J. Sci. Comput. 77, 950–970 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)MathSciNetCrossRef
8.
Zurück zum Zitat Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)CrossRef Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)CrossRef
9.
Zurück zum Zitat Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous diffusion. Boletí,n de la Sociedad Matemática Mexicana 20, 87–105 (2014)MathSciNetCrossRef Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous diffusion. Boletí,n de la Sociedad Matemática Mexicana 20, 87–105 (2014)MathSciNetCrossRef
10.
Zurück zum Zitat Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRef Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRef
11.
Zurück zum Zitat Embrechts, P., Maejima, M.: Selfsimilar processes, Princeton series in applied mathematics. University Press, Princeton (2002)MATH Embrechts, P., Maejima, M.: Selfsimilar processes, Princeton series in applied mathematics. University Press, Princeton (2002)MATH
12.
Zurück zum Zitat Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. PDEs 22, 558–576 (2005)MathSciNetCrossRef Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. PDEs 22, 558–576 (2005)MathSciNetCrossRef
14.
Zurück zum Zitat Fu, H., Ng, M.K., Wang, H.: A divided-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73(6), 1233–1242 (2017)MathSciNetCrossRef Fu, H., Ng, M.K., Wang, H.: A divided-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73(6), 1233–1242 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)MathSciNetCrossRef Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)MathSciNetCrossRef Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincare 19, 3855–3881 (2018)MathSciNetCrossRef Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincare 19, 3855–3881 (2018)MathSciNetCrossRef
18.
Zurück zum Zitat Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRef Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRef
20.
Zurück zum Zitat Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numer Math. (2018) Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numer Math. (2018)
22.
Zurück zum Zitat Lin, X., Ng, M.K., Sun, H.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAMX 38, 1580–1614 (2017)MathSciNetCrossRef Lin, X., Ng, M.K., Sun, H.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAMX 38, 1580–1614 (2017)MathSciNetCrossRef
23.
Zurück zum Zitat Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRef Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRef
24.
Zurück zum Zitat Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics (2011) Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics (2011)
25.
Zurück zum Zitat Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)MathSciNetCrossRef Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)MathSciNetCrossRef
26.
Zurück zum Zitat Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algorithms 74, 153–173 (2017)MathSciNetCrossRef Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algorithms 74, 153–173 (2017)MathSciNetCrossRef
27.
Zurück zum Zitat Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)MATH
28.
Zurück zum Zitat Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)MathSciNetCrossRef Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)MathSciNetCrossRef
29.
Zurück zum Zitat Schumer, R., Benson, D.A, Meerschaert, M.M., Wheatcraft, S. W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrology 48, 69–88 (2001)CrossRef Schumer, R., Benson, D.A, Meerschaert, M.M., Wheatcraft, S. W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrology 48, 69–88 (2001)CrossRef
30.
Zurück zum Zitat Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)MathSciNetCrossRef
31.
Zurück zum Zitat Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A: Stat. Mech. Appl. 388, 4586–4592 (2009)CrossRef Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A: Stat. Mech. Appl. 388, 4586–4592 (2009)CrossRef
32.
Zurück zum Zitat Varah J.: A lower bound for the smallest singular value of a matrix[J]. Linear Algebra Appl 11(1), 3–5 (1975)MathSciNetCrossRef Varah J.: A lower bound for the smallest singular value of a matrix[J]. Linear Algebra Appl 11(1), 3–5 (1975)MathSciNetCrossRef
33.
Zurück zum Zitat Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRef Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)MathSciNetCrossRef
34.
Zurück zum Zitat Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRef
35.
Zurück zum Zitat Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)MathSciNetCrossRef Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)MathSciNetCrossRef
36.
Zurück zum Zitat Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37, A2710–A2732 (2015)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37, A2710–A2732 (2015)MathSciNetCrossRef
37.
Zurück zum Zitat Zhao, Z., Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRef Zhao, Z., Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRef
38.
Zurück zum Zitat Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM Numer. Anal. 58, 330–352 (2020)MathSciNetCrossRef Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM Numer. Anal. 58, 330–352 (2020)MathSciNetCrossRef
39.
Zurück zum Zitat Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)MathSciNetCrossRef Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)MathSciNetCrossRef
40.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRef
Metadaten
Titel
A fast method for variable-order space-fractional diffusion equations
verfasst von
Jinhong Jia
Xiangcheng Zheng
Hongfei Fu
Pingfei Dai
Hong Wang
Publikationsdatum
04.02.2020
Verlag
Springer US
Erschienen in
Numerical Algorithms / Ausgabe 4/2020
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00875-z

Weitere Artikel der Ausgabe 4/2020

Numerical Algorithms 4/2020 Zur Ausgabe