A feasible sequential quadratic programming (SQP) filter algorithm is proposed for general nonlinear programming. It is based on the modified quadratic programming (QP) subproblem in which each iteration proceeds in two phases. The first phase solves a general convex QP problem which does not require any feasibility restoration phase whose computation may be expensive. And, under some mild conditions, the global convergence is proved. The second phase can make the presented SQP method derive quadratic convergence by employing exact Hessian information.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten