Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.06.2018 | Original Article | Ausgabe 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

A feature selection technique based on rough set and improvised PSO algorithm (PSORS-FS) for permission based detection of Android malwares

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 7/2019
Autoren:
Abhishek Bhattacharya, Radha Tamal Goswami, Kuntal Mukherjee
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The set of permissions required by any Android app during installation time is considered as the feature set which are used in permission based detection of Android malwares. Those high dimensional feature set should be reduced to minimize computational overhead by choosing an optimal sub set of features. In recent times, selection of meaningful attributes is an inevitable step for mining of large dimensional data and the application of heuristic feature selection algorithms are the main research directions in this field. “Quality of classification” measure is inspired by rough set theory and can be combined with bio inspired heuristic search techniques (Particle swarm optimization, Genetic Algorithm etc.) in selecting optimal or near optimal subsets of features. In this work, a feature selection technique based on rough set and improvised particle swarm optimization (PSO) algorithm is proposed for selection of features in the permission based detection of Android malwares. The main contribution of this work is to recommend a new random key encoding method which is used in the  proposed work (PSORS-FS) to convert classical PSO algorithm in discrete domain. It also reduces the issues related to maximum velocity of particles as well as sigmoid function which is related with binary PSO. PSORS-FS ensures diversity in the search process and it also reduces the tendency of premature convergence. Datasets of UCI, KEEL machine learning repository and two Android permission datasets have been used to evaluate the performance of the proposed method. Better classification performance has been yielded by proposed method over conventional filters and wrapper methods for most of the machine learning classifiers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Zur Ausgabe