Skip to main content
Erschienen in:

20.04.2024 | Technical Paper

A feedforward-feedback controller based on modified Prandtl–Ishlinskii model and submodel for tracking control the trajectories of piezoelectric actuator

verfasst von: Liqun Cheng, Wanzhong Chen, Liguo Tian, Ying Xie

Erschienen in: Microsystem Technologies | Ausgabe 8/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Piezoelectric actuator (PEA) is widely applied in the field of micro/nano high precision positioning. However PEA has the phenomenon of hysteresis non-linearity between input voltage and output displacement, owing to the natural property of piezoelectric materials. The PEA hysteresis can be compensated by the hysteresis models and control methods, which make the input voltage and output displacement more linearity. The research work on tracking control of PEA trajectories by using various feedforward-feedback controller has been being a hot topic. This paper presents a feedforward-feedback controller based on the modified Prandtl–Ishlinskii (PI) (MPI) model and submodel and the incremental proportional-integral–differential(IPID) controller for tracking control the trajectories of PEA. The polynomial model is adopted as submodel, and parameters of MPI model and submodel are calculated by matlab optimization tool box. The proposed hybrid controller is compiled by C language in VC +  + environment. A series of comparative experiments are validated on a platform of commercial PEA. Comparing with the classical PI model, Bouc-Wen model, and other MPI models based IPID controller, the proposed hybrid controller has better control performance. According to the experimental results of the sinusoidal and triangular trajectories of different peaks and the mix sinusoidal and triangular trajectories, the proposed hybrid control method is feasible and effective in improving the tracking control accuracy of PEA trajectories.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Nadawi YK, Tan X, Khalil HK (2021) Inversion-free hysteresis compensation via adaptive conditional servomechanism with application to nanopositioning control. IEEE Trans Control Syst Technol 29(5):1922–1935CrossRef Al-Nadawi YK, Tan X, Khalil HK (2021) Inversion-free hysteresis compensation via adaptive conditional servomechanism with application to nanopositioning control. IEEE Trans Control Syst Technol 29(5):1922–1935CrossRef
Zurück zum Zitat Bernat-Maso E, Martínez B, Mercedes L et al (2023) Energy harvester based on low cost piezoelectric membrane for road traffic application. Microsyst Technol 29:985–998CrossRef Bernat-Maso E, Martínez B, Mercedes L et al (2023) Energy harvester based on low cost piezoelectric membrane for road traffic application. Microsyst Technol 29:985–998CrossRef
Zurück zum Zitat Chen J, Ren B, Zhong Q (2016) UDE-Based Trajectory Tracking Control of Piezoelectric Stages. IEEE Trans Industr Electron 63(10):6450–6459CrossRef Chen J, Ren B, Zhong Q (2016) UDE-Based Trajectory Tracking Control of Piezoelectric Stages. IEEE Trans Industr Electron 63(10):6450–6459CrossRef
Zurück zum Zitat Chen G, Yan X, Cai J et al (2018) Hysteresis nonlinear modeling and compensation of piezoelectric ceramic sensors in micro measurement systems. Meas Sci Technol 29:095102CrossRef Chen G, Yan X, Cai J et al (2018) Hysteresis nonlinear modeling and compensation of piezoelectric ceramic sensors in micro measurement systems. Meas Sci Technol 29:095102CrossRef
Zurück zum Zitat Cheng L, Liu W, Hou Z et al (2015) Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans Industr Electron 62(12):7717–7727CrossRef Cheng L, Liu W, Hou Z et al (2015) Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans Industr Electron 62(12):7717–7727CrossRef
Zurück zum Zitat Clayton GM, Tien S, Leang KK et al (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Contr 131(6):061101CrossRef Clayton GM, Tien S, Leang KK et al (2009) A review of feedforward control approaches in nanopositioning for high-speed SPM. J Dyn Syst Meas Contr 131(6):061101CrossRef
Zurück zum Zitat Dong R, Tan Y, Xie Y (2016) Identification of micropositioning stage with piezoelectric actuators. Mech Syst Signal Process 75:618–630CrossRef Dong R, Tan Y, Xie Y (2016) Identification of micropositioning stage with piezoelectric actuators. Mech Syst Signal Process 75:618–630CrossRef
Zurück zum Zitat Esbrook A, Tan X, Khalil HK (2013) Control OF SYSTEMS WITH HYSTERESIS VIA SERVOCOMPENSATION AND ITS APPLICATION TO NANOPOSITIONING. IEEE Trans Control Syst Technol 21(3):725–738CrossRef Esbrook A, Tan X, Khalil HK (2013) Control OF SYSTEMS WITH HYSTERESIS VIA SERVOCOMPENSATION AND ITS APPLICATION TO NANOPOSITIONING. IEEE Trans Control Syst Technol 21(3):725–738CrossRef
Zurück zum Zitat Gan J, Zhang X, Wu H (2016) Tracking control of piezoelectric actuators using a polynomial-based hysteresis model. AIP Adv 6:065204CrossRef Gan J, Zhang X, Wu H (2016) Tracking control of piezoelectric actuators using a polynomial-based hysteresis model. AIP Adv 6:065204CrossRef
Zurück zum Zitat Gu G, Zhu L (2011) Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sens Actuators, A 165:303–309CrossRef Gu G, Zhu L (2011) Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sens Actuators, A 165:303–309CrossRef
Zurück zum Zitat Gu G, Zhu L (2014) An experimental comparison of proportional-integral, sliding mode, and robust adaptive control for piezo-actuated nanopositioning stages. Rev Sci Instrum 85:055112CrossRef Gu G, Zhu L (2014) An experimental comparison of proportional-integral, sliding mode, and robust adaptive control for piezo-actuated nanopositioning stages. Rev Sci Instrum 85:055112CrossRef
Zurück zum Zitat Gu G, Zhu L, Su C (2014) Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE Trans Industr Electron 61(3):1583–1595CrossRef Gu G, Zhu L, Su C (2014) Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE Trans Industr Electron 61(3):1583–1595CrossRef
Zurück zum Zitat Gu G, Zhu L, Su C et al (2016) Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans Autom Sci Eng 13(1):313–332CrossRef Gu G, Zhu L, Su C et al (2016) Modeling and control of piezo-actuated nanopositioning stages: a survey. IEEE Trans Autom Sci Eng 13(1):313–332CrossRef
Zurück zum Zitat Janaideh MA, Aljanaideh O (2018) Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl–Ishlinskii model. Mech Syst Signal Process 104:835–850CrossRef Janaideh MA, Aljanaideh O (2018) Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl–Ishlinskii model. Mech Syst Signal Process 104:835–850CrossRef
Zurück zum Zitat Janaideh MA, Rakotondrabe M, Aljanaideh O (2016) Further results on hysteresis compensation of smart micropositioning systems with the inverse Prandtl–Ishlinskii compensator. IEEE Trans Control Syst Technol 24(2):428–439CrossRef Janaideh MA, Rakotondrabe M, Aljanaideh O (2016) Further results on hysteresis compensation of smart micropositioning systems with the inverse Prandtl–Ishlinskii compensator. IEEE Trans Control Syst Technol 24(2):428–439CrossRef
Zurück zum Zitat Janaideh MA, Rakotondrabe M, Al-Darabsah I et al (2018) Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control Eng Pract 72:29–41CrossRef Janaideh MA, Rakotondrabe M, Al-Darabsah I et al (2018) Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control Eng Pract 72:29–41CrossRef
Zurück zum Zitat Jian Y, Huang D, Liu J et al (2019) High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis. IEEE Trans Industr Electron 66(1):368–377CrossRef Jian Y, Huang D, Liu J et al (2019) High-precision tracking of piezoelectric actuator using iterative learning control and direct inverse compensation of hysteresis. IEEE Trans Industr Electron 66(1):368–377CrossRef
Zurück zum Zitat Khanlo HM, Dehghani R (2022) Distributed-parameter dynamic modeling and bifurcation analysis of a trapezoidal piezomagnetoelastic energy harvester. J Appl Comput Mech 8(1):97–113 Khanlo HM, Dehghani R (2022) Distributed-parameter dynamic modeling and bifurcation analysis of a trapezoidal piezomagnetoelastic energy harvester. J Appl Comput Mech 8(1):97–113
Zurück zum Zitat Ko Y, Hwang Y, Chae M et al (2017) Direct identification of generalized Prandtl–Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans 70:209–218CrossRef Ko Y, Hwang Y, Chae M et al (2017) Direct identification of generalized Prandtl–Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans 70:209–218CrossRef
Zurück zum Zitat Kuhnen K, Janocha H (2001) Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Syst 29(3):74–83 Kuhnen K, Janocha H (2001) Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Syst 29(3):74–83
Zurück zum Zitat Lau J, Liang W, Tan K (2019) Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device. Sens Actuators, A 290:97–106CrossRef Lau J, Liang W, Tan K (2019) Enhanced robust impedance control of a constrained piezoelectric actuator-based surgical device. Sens Actuators, A 290:97–106CrossRef
Zurück zum Zitat Leang KK, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Trans Control Syst Technol 15(5):927–935CrossRef Leang KK, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Trans Control Syst Technol 15(5):927–935CrossRef
Zurück zum Zitat Li Z, Zhang X, Ma L (2020) Development of a combined Prandtl Ishlinskii-Preisach model. Sens Actuators, A 304:111797CrossRef Li Z, Zhang X, Ma L (2020) Development of a combined Prandtl Ishlinskii-Preisach model. Sens Actuators, A 304:111797CrossRef
Zurück zum Zitat Liu W, Cheng L, Hou Z et al (2016) An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Trans Mechatron 21(1):214–226 Liu W, Cheng L, Hou Z et al (2016) An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Trans Mechatron 21(1):214–226
Zurück zum Zitat Ma J, Tian L, Li Y et al (2018) Hysteresis compensation of piezoelectric deformable mirror based on Prandtl–Ishlinskii model. Optics Communications 416:94–99CrossRef Ma J, Tian L, Li Y et al (2018) Hysteresis compensation of piezoelectric deformable mirror based on Prandtl–Ishlinskii model. Optics Communications 416:94–99CrossRef
Zurück zum Zitat Mao X, Wang Y, Liu X et al (2018) A HYBRID FEEDFORWARD-FEEDBACK HYSTERESIS COMPENSATOR IN PIEZOELECTRIC ACTUATORS BASED ON LEAST-SQUARES SUPPORT VECTOR MACHINE. IEEE Trans Industr Electron 65(7):5704–5711CrossRef Mao X, Wang Y, Liu X et al (2018) A HYBRID FEEDFORWARD-FEEDBACK HYSTERESIS COMPENSATOR IN PIEZOELECTRIC ACTUATORS BASED ON LEAST-SQUARES SUPPORT VECTOR MACHINE. IEEE Trans Industr Electron 65(7):5704–5711CrossRef
Zurück zum Zitat Napoli R, Piroddi L (2010) Nonlinear active noise control with NARX models. IEEE Trans Audio Speech Lang Process 18(2):286–295CrossRef Napoli R, Piroddi L (2010) Nonlinear active noise control with NARX models. IEEE Trans Audio Speech Lang Process 18(2):286–295CrossRef
Zurück zum Zitat Ni L, Chen G, Hong K et al (2023) Design and development of a compliant piezoelectric microgripper based on three-stage amplification. Microsyst Technol 29:939–952CrossRef Ni L, Chen G, Hong K et al (2023) Design and development of a compliant piezoelectric microgripper based on three-stage amplification. Microsyst Technol 29:939–952CrossRef
Zurück zum Zitat Phi BG, Hieu DV, Sedighi HM et al (2022) Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech 233:2249–2270MathSciNetCrossRef Phi BG, Hieu DV, Sedighi HM et al (2022) Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech 233:2249–2270MathSciNetCrossRef
Zurück zum Zitat Qin Y, Tian Y, Zhang D et al (2013) A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE/ASME Transaction on Mechatronics 18(3):981–989CrossRef Qin Y, Tian Y, Zhang D et al (2013) A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications. IEEE/ASME Transaction on Mechatronics 18(3):981–989CrossRef
Zurück zum Zitat Qin Y, Soundararajan R, Jia R et al (2020) Direct inverse linearization of piezoelectric actuator’s initial loading curve and its applications in full-fifield optical coherence tomography (FF-OCT). Mech Syst Signal Process 148:107147CrossRef Qin Y, Soundararajan R, Jia R et al (2020) Direct inverse linearization of piezoelectric actuator’s initial loading curve and its applications in full-fifield optical coherence tomography (FF-OCT). Mech Syst Signal Process 148:107147CrossRef
Zurück zum Zitat Sabarianand DV, Karthikeyan P, Muthuramalingam T (2020) A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech Syst Signal Process 140:106634CrossRef Sabarianand DV, Karthikeyan P, Muthuramalingam T (2020) A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mech Syst Signal Process 140:106634CrossRef
Zurück zum Zitat Shao J, Chen XL et al (2019) Nanoimprint lithography for the manufacturing of flexible electronics. Sci China Technol Sci 2:175–198CrossRef Shao J, Chen XL et al (2019) Nanoimprint lithography for the manufacturing of flexible electronics. Sci China Technol Sci 2:175–198CrossRef
Zurück zum Zitat Tang H, Gao J, Chen X et al (2018) Development and repetitive-compensated pid control of a nanopositioning stage with large-stroke and decoupling property. IEEE Trans Industr Electron 65(5):3995–4005CrossRef Tang H, Gao J, Chen X et al (2018) Development and repetitive-compensated pid control of a nanopositioning stage with large-stroke and decoupling property. IEEE Trans Industr Electron 65(5):3995–4005CrossRef
Zurück zum Zitat Tao Y, Li H, Zhu L (2020) Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscope. Sens Actuators, A 311:112070CrossRef Tao Y, Li H, Zhu L (2020) Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscope. Sens Actuators, A 311:112070CrossRef
Zurück zum Zitat Wang W, Wang R, Chen Z et al (2020) A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl–Ishlinskii model. Sens Actuators, A 316:112431CrossRef Wang W, Wang R, Chen Z et al (2020) A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl–Ishlinskii model. Sens Actuators, A 316:112431CrossRef
Zurück zum Zitat Xu R, Zhang X, Guo H et al (2018) Sliding mode tracking control with perturbation estimation for hysteresis nonlinearity of piezo-actuated stages. IEEE Access 6:30617–30629CrossRef Xu R, Zhang X, Guo H et al (2018) Sliding mode tracking control with perturbation estimation for hysteresis nonlinearity of piezo-actuated stages. IEEE Access 6:30617–30629CrossRef
Zurück zum Zitat Xu Y, Li X, Yang X et al (2020) A two-stage model for rate-dependent inverse hysteresis in reluctance actuators. Mech Syst Signal Process 135:106427CrossRef Xu Y, Li X, Yang X et al (2020) A two-stage model for rate-dependent inverse hysteresis in reluctance actuators. Mech Syst Signal Process 135:106427CrossRef
Zurück zum Zitat Yang C, Verbeek N, Xia F et al (2021) Modeling and control of piezoelectric hysteresis: a polynomial-based fractional order disturbance compensation approach. IEEE Trans Industr Electron 68(4):3348–3358CrossRef Yang C, Verbeek N, Xia F et al (2021) Modeling and control of piezoelectric hysteresis: a polynomial-based fractional order disturbance compensation approach. IEEE Trans Industr Electron 68(4):3348–3358CrossRef
Zurück zum Zitat Ye M, Wang X (2007) Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization. Smart Mater Struct 16(6):2341–2349CrossRef Ye M, Wang X (2007) Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization. Smart Mater Struct 16(6):2341–2349CrossRef
Zurück zum Zitat Zhou M, Yang P, Wang J et al (2016) Adaptive sliding mode control based on Duhem model for piezoelectric actuators. IETE Tech Rev 33(5):557–568CrossRef Zhou M, Yang P, Wang J et al (2016) Adaptive sliding mode control based on Duhem model for piezoelectric actuators. IETE Tech Rev 33(5):557–568CrossRef
Zurück zum Zitat Zhou M, Wang Y, Zhang Y et al (2021) Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. Smart Mater Struct 30:015019CrossRef Zhou M, Wang Y, Zhang Y et al (2021) Hysteresis inverse compensation-based model reference adaptive control for a piezoelectric micro-positioning platform. Smart Mater Struct 30:015019CrossRef
Metadaten
Titel
A feedforward-feedback controller based on modified Prandtl–Ishlinskii model and submodel for tracking control the trajectories of piezoelectric actuator
verfasst von
Liqun Cheng
Wanzhong Chen
Liguo Tian
Ying Xie
Publikationsdatum
20.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2024
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-024-05649-4